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There is a closc: relationship between the symmetry changes in the plane and space 
groups of convective systems and the t,ype of the bifurcation. To explore this relation- 
ship the plane- and space-group symmetry of many convective circulations is first 
classified using standard crystallographic notation. The transitions that occur 
between these patterns can be described by the loss of either a translational or a 
point-group symmet.ry element. These are referred to as klassengleiche and 
translationengleiche or k and t ,  transitions respectively. Any transition can be 
decomposed into a series of k and t transitions. The symmetry of the governing 
differential equations is most easily discussed when these are written in terms of 
potentials, and allows transitions to be classified as pitchfork, transcritical or Hopf 
bifurcations. Such classification can be carried out from symmetry alone, without 
any consideration of t.he functional form of the solutions, the Rayleigh number or the 
importance of the nonlinear terms. For this purpose it is convenient to define a factor 
group, the irreducible representations of which transform as do the variables and 
differential operators in the equations. 

Analysis of planform transitions observed in convective flows when the viscosity 
is temperature dependent using plane groups shows that all except the transition 
from the conductive solution to hexagons are pitchfork bifurcations. The factor 
groups involved are the cyclic group Z,, and the dihedral groups D, and D,. When 
the viscosity is constant, space groups are needed, and symmetry arguments show 
that all except the Eckhaus instability are pitchfork bifurcations, including that 
from the conductive solution. Hopf transitions to solutions periodic in time, in 
double-diffusive, in small- and in large-Yrandtl-number convection, all involve loss 
of reflection symmetry in time and the factor group is D,. The same approach 
suggests how transitions to circulations that are not periodic in either space or time 
may occur by period doubling in space or in time or in both. 

1. Introduction 
Planform transitions between spatially periodic patterns in convecting systems 

obviously involve changes in symmetry. Since Wigner’s (1959) classical work, to a 
physicist symmetry changes imply that group theory should be applied. The theory 
of space groups is particularly concerned with the symmetry of periodic lattices, and 
has been extensively studied by crystallographers. The object of this paper is to 
explore a variety of convective transitions from this point of view, using the 
necessary results from group theory that are outlined in 52.2. The principal result is 
an understanding of the nature of the loss of symmetry in the transitions observed. 
There is a close relationship between the change of symmetry and the nature of the 
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bifurcation, which allows transitions to be classified as pitchfork, transcritical or 
Hopf bifurcations on the basis of the symmetry change alone. It is also important to 
emphasize what group theory cannot do. The method cannot determine the sign or 
the magnitude of the constants in the normal form equations, and therefore whether 
the transition is sub- or supercritical. Nor can i t  determine the critical Rayleigh 
number. Such questions must be answered by experiment, either in the laboratory 
or on a computer ; or by analysis. Numerical experiments are rapidly becoming easier 
to perform, and the theory outlined below provides the framework for a systematic 
numerical investigation of transitions in space and time. 

Previous applications of group theory to convective systems have mostly been 
concerned with marginal stability, and are rather abstract. Sattinger (1977, 1978) 
analysed the nature of the change in symmetry involved in the initial formation of 
a convective planform, and his work has been extended by Buzano & Golubitsky 
(1983), Golubitsky, Swift & Knobloch (1984), Golubitsky & Schaeffer (1985) and 
Golubitsky & Stewart (1985). These authors were all concerned with the onset of 
convection. The present study has two important differences from this earlier work. 
The governing equations are written in potential form, which results in a considerable 
simplification of the symmetry groups involved. The other difference involves the use 
of ideas from crystallography concerning the notation, classification, structure and 
interrelationships of line, plane and space groups. Crystallographers are also 
concerned with symmetry changes, e.g. in structural phase transitions, and have 
developed a group-theoretical approach that is essentially based on Landau theory. 
Some of these ideas can be applied to convective systems, though this must be done 
with care because the fluid-dynamical problem is never in thermodynamic 
equilibrium. 

The first step in describing a transition is to determine the symmetry elements 
before and after the change occurs. It is convenient to consider the change to occur 
always from the more symmetric to the less symmetric system. The planform of 
steady circulations can be described by the plane groups. They are listed with their 
symmetry elements in Volume A of the Intern,ational Tables for Crystallography 
(Hahn 1983), hereinafter referred to as I T  (1983). If the circulation has three- 
dimensional symmetry elements, as do many constant-viscosity flows, then space 
groups are required that are also all listed in I T  (1983). The Fourier series 
corresponding to  all the plane and space groups are listed in the earlier International 
Tables for X-ray CrystalEography (Henry & Lonsdale 1952, last revision 1977), which 
will be referred to as IT (1952). The elements of crystallographic groups are 
translations, reflections and rotations. Convective systems are described by the 
temperature difference with respect to some reference temperature and by two scalar 
potentials. The convective problem therefore allows the symmetry operation, [w, that 
reverses the sign of a scalar, as well as the usual proper and improper rotations and 
translations. Space groups that contain Iw in combination with some space-group 
operations are known as black and white groups and are not included in IT  (1983). 
Crystallographers have worked with two- and three-dimensional space groups since 
the nineteenth century (see I T  1983) and with black and white space groups for more 
than fifty years (Heesch 1930, see Shubnikov & Koptsik 1974), but little use of this 
work seems yet to  have been made in fluid dynamics. 

The other difference between the space groups of IT (1983) and those expressed by 
convective circulations concerns time dependence, which leads to perodicity in time 
as well as space. The space groups required are then four-dimensional and also black 
and white. Though four-dimensional space groups have been studied (see Ncubuser, 
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Wondratschek & Biilow 1971; Biilow, Neubuser & Wondratschek 1971; Won- 
dratschek, Bulow & Neubiiser 1971 : Brown et al. 1978), they have not attracted the 
same interest as have those in three dimensions. 

One of the most fruitful approaches for crystallographic studies of phase transitions 
is Landau theory (see Landau & Lifshitz 1980, ch. 13), which starts from the 
requirement that the Gibbs free energy, or thermodynamic potential, 63, cor- 
responding to an equilibrium state, must be a minimum with respect to the order 
parameter. No corresponding extremum principles are known for the Navier-Stokes 
and heat transport equations, and therefore a different approach must be used that 
starts from the governing differential equations ($2.1). These are first written in 
potential form, because the scalars involved then transform as representations of 
four-dimensional black-and-white space groups. The differential operators are also 
transformed by the symmetry operators and their behaviour must be taken into 
account. The transformation properties of each term in the differential equation 
depends on that of both the operator and of the scalar function or functions on which 
it operates. The symmetry groups before and after the transition occurs have many 
elements in common, most of which need not be considered. It is important to 
discover the most compact description of the difference between the two groups 
involved, which is a factor group of the symmetry group with the greater number of 
symmetry elements. The nature of the transition is then controlled by the 
interrelationship between the irreducible representations of this factor group. The 
only practical difficulty is in finding the factor group of lowest possible order. 

The application of group theory to the study of convective transitions involves the 
use of symbols and terminology that obscure the simplicity of the ideas involved. The 
analysis below depends on the interaction between the symmetry groups of the 
differential operators, which contain point symmetry elements and all translations, 
with those of the variables, which contain symmetry elements corresponding to 
discrete translations only, as well as point-group elements. Perturbation theory is 
used to analyse the nature of the transitions by expanding all quantities in terms of 
the amplitude E of the perturbation. The Rayleigh number R is written as R, + eR1 + 
e2R,.. . , where R, is the critical Rayleigh number for the transition, and terms of 
O(e3) and higher are ignored. The governing equations are then obtained, and in 
many cases contain a single term R, f ( z ,  y, z ,  t )  that transforms differently from all the 
other terms. The value of this term must therefore be zero. I n  general, since f + 0, 
R, must be zero. The relationship between R and E then requires 

E = ((R-R,)/R,$ 

and the bifurcation is a pitchfork bifurcation if R, $. 0. It is easy to demonstrate that 
the solvability condition is then also satisfied. The purpose of much of the analysis 
below is to consider the transformation properties off and of the other functions 
without specifying the form of the functions themselves. By so doing the question of 
whether the equations involved are linear or nonlinear becomes irrelevant. But this 
approach requires the terminology and apparatus of group theory. Though all the 
applications discussed below are to convective circulations in plane layers, the same 
methods can be applied to any problems that can be described by differential 
equations, and are no harder to use on nonlinear partial differential equations than 
on linear ordinary differential equations. 

The next section, 2, is concerned with the results from fluid dynamics, group 
theory and crystallography that are required. The crystallography ( Q  2.3) is discussed 
in most detail because it is likely to be the least familiar to fluid dynamicists. Section 3 
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is concerned with the planform transitions observed by White (1981, 1988) in a 
convecting fluid whose viscosity is a strong function of temperature. Though his 
experiments were not designed to measure the Rayleigh numbers a t  which planform 
changes occurred, he observed a great variety of transitions from his initial 
circulations, and the nature of these bifurcations can easily be discovered using group 
theory. Most of the transitions discussed occur at Rayleigh numbers considerably 
above the critical, when the flow is thoroughly nonlinear. These transitions are easier 
to describe using group theory than is the bifurcation that occurs when convection 
starts. This section therefore illustrates the contrast between the use of factor groups 
and the usual perturbation theory. Section 4 is concerned with transitions between 
three-dimensional space groups, and is restricted to transitions between steady flows. 
Transitions discussed include the transition from the stationary state to rolls or 
hexagons, and how this transition is affected by boundary conditions and fluid 
properties. Other three-dimensional transitions are also analysed. Section 5 is 
concerned with transitions to oscillatory flows through Hopf bifurcations. Several 
examples are considered, all of which have the same factor group D,. The manner in 
which pitchfork bifurcations could lead to aperiodic motions in space and time is 
outlined in 96. 

2. Background 
2.1. Governing equations 

The transitions discussed in $93-5 occur in convecting fluids driven by heat supplied 
from below. In  the infinite-Prandtl-number experiments in 993 and 4 the viscosity 
may be a function of temperature. Some of the transitions to time dependence in $5  
involve fluids with finite Prandtl number and also double-diffusive effects. The 
governing equations are well known, and are simplest to use when they are scaled and 
when the velocity is expressed in terms scalar potentials X and $. Since the velocity 
u is solenoidal, it can be written as 

u=uAZ^$+UAUA&!!, (2.1) 

where is the unit vector pointing upwards, or 

u = (ay$+aa,a,s, -a,$+a,a,x, -vgx), (2.2) 

where v2 = - a 2  ,+a;. 
When u is written in this way the flow is incompressible and mass is conserved. 
Conservation of heat requires 

a,T+u.UT = V'T, (2.3) 
which leads to 

where T is the temperature measured with respect to some reference temperature 
(often taken to be the mean temperature of the layer) and scaled using the 
temperature difference AT* across the layer, and 
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The fourth term on the left of (2.4) may also be written as 

a, $3, T - a, $a, T .  (2 .5)  

All lengths in these equations have been scaled by the thickness d of the convecting 
layer, and the time by the diffusive time d 2 / K T ,  where K~ is the thermal diffusivity. 
The corresponding equation for the conservation of a solute (such as salt) is 

a, s + u .  Vs = rV2s, (2.6) 

(2.7) leading to a, s+ v, a, s- v, S -  vg sa, + 2. (vs A v$) = T v ~ s ,  

where s is the solute concentration measured with respect to some reference 
concentration and scaled to the concentration difference As* across the layer, and 

7 = K , / K T  (2.8) 

is the reciprocal of the Lewis number, and K,  is the diffusivity of the solute. 
The equations corresponding to the conservation of momentum are more 

complicated. When the viscosity is constant and the density depends on both 
temperature and the concentration of the solute, the dimensionless form of the 
momentum equations is 

1 
- (a, u + w A u )  = V2u + (RaT - R, S )  2- VP, (2.9) 
U 

where w is the vorticity 

and 

where P* is the pressure ; Ra is the thermal Rayleigh number 

gad3AT*. 
Ra = 

KT 1' 

R, is the solutal Rayleigh number 

g/3d3As*. 

K, JJ 

R, = -, 

(2.11) 

(2.12) 

u is the Prandtl number = V / K T .  (2.13) 

The density p is given by p = po( l  -aAT*T+PAs*s), (2.14) 

where po is a constant. Equation (2.14) defines a and /3, g is the acceleration due to 
gravity, u the fluid viscosity, and AT* and As* the temperature and concentration 
differences between the lower (hot, large concentration) and the upper boundaries 
respectively. Evaluation of (2.9) gives 
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(2.17) 

whose vertical component is 

The horizontal vorticity is maintained by the horizontal derivatives of T and s, but, 
as is well known, the vertical vorticity is only non-zero if the nonlinear terms 
involving S alone in (2.18) are non-zero. These reduce to 

a; a, svg ay s - a; a, svg a, s. (2.19) 

A necessary but not sufficient condition for this term to be non-zero is that S = 
S(x,  y, 2). Even then vertical vorticity is only generated if the Prandtl number is 
finite. The term involving R, on the right of (2.16) is only present when the convec- 
tion is doubly diffusive. The momentum equation simplifies greatly when the Prandtl 
number is infinite, since the left-hand side of (2.16) is then zero. 

Several of the examples of time-dependent behaviour in $ 5  are concerned with 
two-dimensional flows. These are commonly described using a stream function 
Y(x,  x )  where 

u = (a, y o ,  -az u). (2.20) 

Equation (2.20) is identical to (2.2) if 

$ = o ,  axs= Y. (2.21) 

Therefore S and Y transform differently. It is convenient to use S and $ in all 
discussions, but the corresponding behaviour of Y can be obtained from (2.21) if 
desired. 

Some important transitions occur through Hopf bifurcations and concern the 
change from steady-state to time-dependent flow. Transitions observed exper- 
imentally can be discussed using the full convective equations (2.4), (2.7) and (2.16). 
But a well-known example of a Hopf bifurcation occurs in double-diffusive 
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convection a t  the onset of convection. The linearized form of the equations governing 
doubly diffusive convection can be obtained from Veronis's (1965) expressions 

where 

(Ta 
d,a, = -vx2(a2+1)a,+ (Raa,--R,a,), x(a2 + 1)  

(2.23) 

d,a, = -xz(a2+1)a3-xaal, (2.23) 

d,a, = -7x2(a2+1)a,-xaa,, (2.24) 

a 
S = - 2 cos xax sin xz, 

no1 
(2.25) 

$ = 0, (2.26) 

T = a3 cos xax sin xz, (2.27) 

s = a5 cos xax sin xz. (2.28) 

The system that shows a greater variety of convective planforms than any other 
that has yet been studied is thermal convection in a fluid whose viscosity is a strong 
function of temperature (White 1981, 1988). Section 3 is principally concerned with 
a discussion of his results. The conditions he used produced a variation in the 
viscosity between the top and bottom surfaces, whose temperatures were fixed, of up 
to a factor of a thousand. Therefore the variation of viscosity cannot be treated as 
a perturbation, and the full equations must be used. The equations are simpler if the 
curl of the momentum equations is not taken. The equation governing the 
conservation of the tjwo components of horizontal momentum then is 

2(v,4. v,) v, a, s + 2Tvz, v, a, s + 28, Tv,(a: s - vk s) 
+ rvH(a,"x-vk + 2(aaz-$a,) (Tazay $1 + $-a: $)I 

+ a,(q(aa,-pa,) a, $1 = - v, P (2.29) 

v, 7 .  v,(a:s-v&s) + qvk(a;s-vhs) +z". (v, 7 A vHa, +) = -RUT, (2.30) 

and that of vertical momentum is 

where the viscosity T* is Y* = T O T ( T )  (2.31) 

and q0 is the viscosity a t  the average of the top and bottom temperatures. The third 
term on the left of (2.30) may also be written as 

(a,Tay - a?J 7a.J a, $. 

2.2. Group theory 

The relevant results from group theory required below are proved in most 
introductory books on the subject, such as those by Ledermann (1973) and Hill 
(1975). Wigner's (1959) discussion is more directed towards physical applications, 
and that by Grossman & Magnus (1964) towards mathematical problems. Cotton 
(1963) provides a number of helpful examples of how abstract group theory may be 
used in chemistry. 

A group G is defined by the multiplication table of its elements g i ,  each of which 
must have an inverse q i l  that is also an element of the group. One element must be 
the identity element E ,  where Eg, = gi.  The order of the group is the number of 

(2.32) 
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elements i t  contains. If two elements gi and gi are related by gi = gt'g,gk,  where g, 
is any element of the group, they belong to the same class, and gi and gj are called 
conjugate elements. The order of each class must be an integral factor of the order 
of the group. A compact description of a group is given in terms of generators, whose 
repeated application generates all the elements of the group. Different choices of 
generators are possible. A group contains a subgroup H with elements hi if all 
products hihj are elements of both H and G. Conventionally the order of these 
operations is from left to right, which leads to the opposite convention for matrix 
multiplication being used in group theory to that of linear algebra (see Hill 1975, 
p. 48). The usual convention of linear algebra for matrices will be used below, since 
this is more familiar to fluid dynamicists. A subgroup is described as an invariant (or a 
normal or an isotropy) subgroup if g;lhig, = h, for every element of G, and is then 
written H a  G. To determine whether H -a G it is only necessary to discover whether 
those elements of G that are not also elements of H satisfy this condition. If there is 
only one such element gi and gt = E ,  Ledermann (1973, p. 62) shows that H must 
then always be an invariant subgroup. If H and K are two invariant subgroups of G, 
with only the identity element in common, and gi = h,k,, G is called the direct 
product of H and K ,  and is written G = H @ K .  If only K is an invariant subgroup 
then G = H K  is called the semidirect product of H and K ,  and is written G = H 
K .  Many space groups are semidirect products of their subgroups, and i t  is therefore 
important to test whether either or both of H and K are invariant subgroups. It is 
also important to realize that A a H a  G does not require d u G .  The right coset of  
H in G generated by an element gi of G is Hg,, where gi may be an element in common 
to both H and G .  A very useful result is that cosets are either identical or have no 
elements in common. The left coset is g, H and is the same as the right coset if H -a 
G. An important result that  is used repeatedly in the discussion below is that of a 
homomorphism between two groups G and H .  G is homomorphic onto H if one and 
only one element of H corresponds to every element of G and a t  least one element of 
G corresponds to  each element of H ,  and if the products of the corresponding 
elements in the two groups are the same. The two groups are isomorphic if only one 
element of G corresponds to each element of H .  If A a  G ,  and the identity element 
of H corresponds to all the elements of the group A in G, then H is isomorphic to a 
factor group of G .  This is written G / A  E H .  A is a maximal invariant subgroup of G 
if no group H exists (other than A or G) such that A a H 4 G .  Correspondingly G is 
then a minimal supergroup of A .  A has this property if and only if the factor group 
G / A  has no subgroups. There is not necessarily a unique maximal invariant subgroup 
of G. 

Applications of group theory are often simplified by making use of irreducible 
representations of groups, which may be one-dimensional real or complex numbers, 
or of higher dimensions, when the irreducible representations are matrices. Traces of 
these matrices are called characters. Representations are called faithful if each 
element of the group has a different representation. The irreducible representations 
of a number of finite abstract groups that occur as subgroups in the (infinite) space 
groups are given by Bradley & Cracknell (1972, table 5.1, p. 226), who also give the 
irreducible representations of all 230 space groups (table 5.7, p. 293). Once the 
irreducible representations have been determined they can be used to obtain 
projection operators. Any function can then be projected onto the irreducible 
representations to determine how it  transforms. These operators can also be 
combined with the Fourier expansions in IT  (1952) to obtain a complete 
representation of any irreducible representation of any factor group of a space group 
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in terms of orthogonal functions. This procedure is illustrated in the Appendix by 
determining the functions that transform in the same way as do the irreducible 
representations of D, in the transition illustrated in figure 10. 

One reason why the irreducible representations of groups are used so extensively 
in physics and chemistry is because of certain simple properties of their characters. 
In many problems the product of several terms which transform in different ways is 
needed. In  the equations above, such products occur in the nonlinear terms, and also 
in the linear terms, which contain products between the linear differential operators 
and the variables. The great advantage of using irreducible representations is that 
the characters of the product can be obtained directly from the product of the 
characters of each of the irreducible representations of each term of the product (see 
Cotton 1963, p. 83). Since the product of two irreducible representations need not 
itself be irreducible, it is in general necessary to use the orthogonality of the 
characters of the irreducible representations to determine which are present in the 
product. The reason why this result is so important is that, since the characters are 
numbers, they are abelian. Hence the result is independent of the order in which the 
multiplication is carried out. Therefore from the point of view of the symmetry, the 
order of the terms in a differential equation is immaterial. It is also immaterial 
whether the irreducible representations in the product correspond to  those of 
variables or of differential operators. From the point of view of symmetry there is 
therefore no difference between linear and nonlinear differential equations. These 
results are exploited in $2.4 to rewrite the fluid-dynamical equations in a form that 
emphasizes their symmetry. 

However, before doing so it  is necessary to discuss the problem of notation. 
Fortunately that for ordinary line, plane and space groups has been standardized by 
international agreement (IT 1983), and these international, or Hermann-Mauguin, 
symbols are used below. Similar tables have been produced for the four-dimensional 
space groups (Brown et al. 1978), but these are less easy to use. They include the 
space-group generators, but do not list the possible transitions Brown et al.’s (1978) 
symbols are used for the four-dimensional space groups involved in time-dependant 
convective flows. The Schoenflies symbols are used for the factor groups, with 2, 
being the cyclic group of order 2, D,(= V and V,) = Z , @ Z ,  being Klein’s 
Vierergruppe of order 4, D, the dihedral group of order 6, and D, the dihedral group 
of order 10. These symbols will be used for any groups that are isomorphic to these 
abstract groups, regardless of what physical operation the elements of the group 
represent. The notation used for the irreducible representations is simply to number 
them in the same way as do Bradley & Cracknell(1972). Use of the standard notation 
(see for instance Cotton 1963) for such representations would require different 
symbols for isomorphic groups, according to the nature of the group elements. Such 
a procedure would then obscure the simple relationships that become apparent when 
the same notation is used for all isomorphic groups. 

2.3. Line, plane and space groups 
Line, plane and space groups are the symmetry groups of periodic structures filling 
one-, two- or three-dimensional space respectively, and are listed with their 
generators in IT  (1983). Each has a unit cell that fills space when repeated by 
translations. The conventional unit cell used in crystallography is not necessarily the 
smallest possible, and for many groups the conventional choice of axes (IT 1983) is 
not an orthogonal system. However all unit cells and generators listed below use 
orthogonal axes, defined in the appropriate figures. The generators are of two types : 
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displacements in the x-, y- and z-directions, with the length of the conventional unit 
cell taken to be a,  b and unity in directions x, y and z ,  which generate a lattice called 
a Bravais lattice and point operations. Symmetry elements that  combine point 
operations and translations may also occur. The point operations consist of proper 
rotations C,, C,, C, and C,, where C, represents a rotation through 360/n", reflections 
m, and inversion 1. Values of n other than 2, 3, 4 and 6 cannot occur in periodic 
lattices if pseudocrystals are not considered (Landau & Lifshitz 1980, p. 405). 
Subscripts x, y and z are used to denote the rotation axis of C or the normal to the 
reflection plane. I n  crystallography the directions x, y and z are written [loo], [010] 
and [001] respectively. 

In  two and three dimensions generators may also consist of combinations of 
reflections and displacements, known as glide planes g ,  and denoted a,  b and c 
according to whether the displacement is parallel to the x-, y- or z-axis. When a 
possible choice of generators consists of a number of point-group operations carried 
out a t  the same point, together with a number of displacements, the space group is 
known as a symmorphic group. Some elements of the group may correspond to 
movement on glide planes, but if the group is symmorphic these operations can be 
written in terms of point symmetry elements and displacement elements. Non- 
symmorphic space groups cannot be generated from point-group elements operating 
a t  one point and translational elements, and contain generators which combine 
reflections and translations, corresponding to glide planes, OT rotations and 
translations, corresponding to screw axes, or both. 

When the symmetry of a space group changes i t  can do so in one of t'hree ways (see 
Wondratschek in I T  1983, p. 727). A point-group symmetry element can be lost, 
without changing the translation group. Subgroups of this type are known as 
translationengleiche or t subgroups, and are written 

t 

+ 

with a subscript denoting the point-group symmetry element that is lost. There are 
a finite number of such transitions. Another type of transition involves the loss of a 
translational symmetry element with the retention of the point-group symmetries. It 
is written 

k 
+ 

and the resulting subgroup is known as a klassenglciche or k subgroup. Infinitely 
many k transitions can occur in any line, plane or space group. Notice that the 
symbol t or k refers to the symmetry elements that are retained in the transition. The 
most general transition involves the loss of both point and translational symmetry 
elements. Fortunately a theorem due to Hermann (1929) requires the maximal 
subgroup to be either a k or a t subgroup. IT  (1983) list all the maximal t(I) and k(I1) 
subgroups, and subdivide the k subgroups in various ways. But unfortunately no 
indication is given as to whether or not the subgroup is invariant. Each must 
therefore be checked. Figure 1 shows the invariant and ordinary subgroups of the 
two-dimensional point groups, and is helpful as a guide for transitions to t 
subgroups. 

The short Hermann-Mauguin symbols are used to denote line, plane and space 
groups, and are discussed in I T  (1983) table 2.4.1. The symbols start with a capital 
letter for space groups, a lower-case letter for plane groups and a script letter for line 
groups. The letter indicates the Bravais lattice of the group, with P ( p  and b) 



The symmetry of connective transitions 

12 - 
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6 -  

a 

$ 4 -  

g 

(r 

Y 

G 3 -  

2 -  

1 -  
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FIWRE 1. Maximal subgroups and minimal supergroups of the two-dimensional crystallographic 
point groups. The orders of the groups are given on the left. Where a group of higher order is joined 
to one of lower order by a solid line the lower-order group is an invariant subgroup of the higher. 
Where the Line is dashed the subgroup is an ordinary subgroup (taken from IT 1983, figure 10.3.1 
with modifications). 

denoting a primitive lattice, A ,  B and C ( c )  face centred in the yz, xz and xy planes, 
and I and F (space groups only) body centred and face centred in all three planes. 
The next symbol denotes the rotational symmetry element normal to the plane 
(plane groups), or, in the case of space groups, a rotational element about a particular 
axis or mirror plane normal to this axis. If a space group has both, it is written as 
P2/m, for instance, to show the presence of both C,, and m,. The international 
symbols for these elements are 2 and m. Which axis i t  is whose symmetry follows the 
initial letter of the space-group symbol varies according to the lattice. For 
orthorhombic lattices the order is x, y, z, but for tetragonal and hexagonal lattices 
the C, and C, axes are taken to be in the z-direction and the space groups are written 
as P4 or P6. The symmetry direction of the last two symbols can be determined by 
reference to table 2.4.1, IT (1983, p. 15). The absence of any symmetry in one of these 
directions is denoted by a 1 in the full symbol, but is omitted in the short symbol. 
The space-group symbols for non-symmorphic groups can be recognized by the 
presence of numbers as subscripts denoting screw axes, and of the letters a, b ,  c, d or 
n, all of which refer to glide planes. In plane groups only glide lines occur and are 
denoted by g. 

There are several advantages in using the international space-group symbols. They 
uniquely define the 230 space groups and 17 plane groups. Once the space group has 
been determined, the International Tables provide a list of generators, symmetry 
positions, k and t subgroups, and supergroups. They also provide the order of the 
factor group when the transition is to an invariant subgroup. Furthermore the earlier 
International Tables (IT 1952) contain the representation of each group in terms of 
Fourier series in two and three dimensions. These representations will considerably 
simplify the use of perturbation theory. Though the use of these tables is as yet 
unfamiliar to fluid dynamicists, they contain a variety of useful results. 

For fluid dynamical use the tables must be extended in two ways, to take account 
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of sign changes and of time-dependent behaviour. A sign change may be associated 
with any symmetry element, but does not occur in conventional crystallography 
because the electron density is always positive. It is, however, important if electron 
spin is of interest, as it is in magnetic materials. I n  fluid dynamics the temperature 
and velocity potentials can change sign. The resulting space groups are called black 
and white space groups and are discussed in a readable book by Shubnikov & 
Koptsik (1974). There are four types of such groups, three of which contain the sign 
reversal or antisymmetric operator R. The first type, I, does not include R, and 
consists of all the ordinary space groups in IT  (1983). Groups belonging to the second 
type, 11, contain R alone as a symmetry operator and are known as grey groups. 
Groups of types I11 and I V  contain elements such as Rm or Rt, denoted m’ and t’, 
which change the sign under reflection or translation, but do not contain R itself as 
an operator. When the element or elements producing the sign change are elements 
of a point group the space group is defined to be of type 111, whereas when they are 
translations the group is of type IV. The black and white groups discussed below are 
all of types 111 and IV, which are isomorphic to  groups of type I (Shubnikov & 
Koptsik 1974, pp. 272-5), since one or more of the generators is associated with R. 
It is straightforward to decide which these generators are by using IT  (1983). Bradley 
& Cracknell(1972) list the black and white or Shubnikov space groups together with 
the black and white generators, denoted by a prime. Their notation for these groups 
will be used here, and is based on the international symbols. Unfortunately the 
generators they use are not always the same as IT  (1983). Tables like IT  (1983) do 
not exist for the 1651 black and white space groups. However, because types 111 and 
IV are isomorphic to those in IT  (1983) i t  is easy to use these tables to determine their 
subgroups. The same is not true of the four-dimensional black and white space 
groups that are required for the discussion of the oscillations of three-dimensional 
convective flows. Tables like IT (1983) for four-dimensional groups would be useful 
now that three-dimensional time-dependent computations have become practicable. 

The groups listed in IT (1983) are all periodic in one, two or three dimensions. 
Some of the convective circulations discussed below are invariant under any 
translation, a symmetry that is often lost when a transition occurs. For instance the 
onset of convection involves a change from a one- to a two-dimensional flow, and the 
cross-roll instability from two to three dimensions. Infinite groups that contain all 
translations in one direction as symmetry elements will be denoted by a subscript 
zero, with P,,, and p,, referring to groups containing all translations in the x- 
direction. It is also sometimes necessary to indicate complete axial symmetry about 
one axis, using the same order for the symbols as is used for orthorhombic space 
groups and 00 to represent C,. For instance P,,,m~m00/m’ is a space group that is 
invariant under all translations, under any rotation about the z-axis and any 
reflection in any vertical plane, but changes sign when reflected in a horizontal 
plane. 

The conventional international symbols refer to  the coordinate system defined in 
IT (1983). This is not necessarily the same as that used in the fluid-dynamical 
equations. No difficulty arises in the use of plane groups to describe planform 
changes, since the z-axis is taken to be vertical in both fluid dynamics and 
crystallography. In  the case of space groups, however, the coordinate systems are 
often different. The space-group symbol will then be written using the standard fluid- 
dynamical coordinate system and is unconventional. The conventional symbol 
therefore follows in brackets, so that the relevant space group can be found in IT  
(1983). Since the symmetry positions and generators are also given in the 
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crystallographic axes, these must also be converted (see 94). One further 
crystallographic convention that is used is to denote -x as E. 

The first step in any discussion of a transition requires the space group or plane 
groups of both states. It is generally easy to decide which is the appropriate lattice, 
to identify the axis of greatest symmetry and any mirror planes. This information 
together with table 2.4.1 of IT (1983) is sufficient to eliminate most possibilities and 
to write out the first one or two entries of the international symbols. All appropriate 
space groups must then be examined to find one which has all and only the symmetry 
elements of the convective circulation. Glide planes not perpendicular to the axes are 
easy to miss. Then the convective pattern is assigned to a subgroup of the space 
group to which it properly belongs. When the appropriate groups have been found 
it  is then necessary to determine those generators common to both groups, and the 
generator or generators possessed only by the space or plane group of higher 
symmetry. It is frequently necessary to use a different choice of generators from that 
given in IT (1983). These operations are discussed in detail in 93. 

2.4. Symmetry of variables and d i ~ e r e n t ~ u ~  operators 

The results of the first three sections must now be combined to discover how the 
operators and variables in the differential equations behave when transformed by the 
elements of the space groups. The symmetry groups of the operators will be 
considered first. All space-group transformations correspond to operations that 
preserve lengths and angles, and therefore do not affect the form of the differential 
operators, though their signs may change. Differential operators therefore transform 
in the same way as do those irreducible representations of the Euclidean groups En, 
where n is the dimension of the space involved, that are invariant with respect to 
all translations. Space groups are subgroups of these Lie groups, and the variables 
transform in the same way as do the irreducible representations of these subgroups. 
To determine which representation of a space group is appropriate for each 
differential operator it is therefore only necessary to discover how an operator 
behaves under the point-group elements of the space groups, since all are invariant 
under translations. It is not necessary to find the irreducible representation of the full 
Lie group that transforms in the same way as does the operator, because this 
representation must also transform like the operator under the elements of any 
subgroup of the group. 

The symmetry groups of the operators are conveniently shown using a simple 
representation of the Lie group E ,  (2 A j ) ,  2 and t" that is invariant under Cmz. (3  A 9) 
changes sign under m, or my, but not under m, or m,, whereas 2 changes sign only 
under m,, and t" only under m,. These are the only point-group elements that  occur 
in the space groups considered below. This representation is invariant under any 
translation and under R, and can therefore transform as do the differential operators. 
But it is only their transformational behaviour, not their direction, that  is 
represented. 

The behaviour of the differential operators under reflection can be determined by 
inspection, but that under C,, is sometimes not obvious and must be determined by 
using rotation matrices. Rotation through +8 about the z-axis changes (x,y) to 
(x', y ' )  where 

x' = x cos8- y sin 8, y' = x sin19+ y cos8. (2.33) 

The common convention in group theory that is used here is that elements of point 
groups leave the axes fixed in space and rotate the vectors. The orthogonal matrix 
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describing the rotation (2.33) is then the inverse of that  for the rotation of the axes. 
Hence 

(2.34) 

It is then straightforward to show that a,, V,, V, VL, V2 and V A are invariant under 
any rotation about a vertical axis. Hence the linear operators in all the symmetry 
equations are invariant under Cmz. The nonlincar terms in (2.4), (2.7) and (2.15) are 
also invariant under Cmz. This result was also proved by Sattinger (1978) using (2.3) 
and (2.9), but is more obvious when the equations are written in terms of potentials. 
It is also to  be expected that the last three terms on the left-hand side of (2.29) will 
be invariant under C,,, since no particular horizontal axes is defined by the 
dynamics, but this result is less obvious from the form of the operators. I n  a rotated 
frame the x- and y-dependence of the last operator on the left of (2.29) is 

a'a,, +axr ; (2.35) 

substitution of (2.34) gives aa, +a, (2.36) 

and therefore this operator also is invariant under CmZ. The fifth and sixth operators 
must be taken together and after some algebra may be shown also to be invariant 
under Cm,. 

To discover the appropriate representation, the differential operators must first be 
expressed in terms of unit vectors and scalar operators. Their behaviour under m,, 
my, m, and m, can then be determined. For linear terms this procedure is easily 

(2.37) 

where the transformational behaviour is given in the last column. There is no 
relationship between the direction of a vector operator and that of the representation 
that transforms in the same way. The nonlinear terms in (2.4) can be expressed as 

'1 (2.38) 
V, a, S V, T - V& Sa, T x S x T 

aY @a,T - a, @a,T (a A?)  x @ x T.J 

where the product sign x means that the transformational behaviour is that of the 
two terms on either side. Since (2.38) is only concerned with the transformational 
behaviour, which in turn depends only on the abelian products of the corresponding 
characters of the irreducible representations (see § 2 . 2 ) ,  the order in which the terms 
arc written is unimportant. Equation (2.4) then becomes 

i x  T +z^ x s x T + (2 A$)  x @ x T = T .  (2.39) 
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Equations such as (2.39) will be referred to as symmetry equations. The signs are not 
meaningful and will always be shown positive. The dimensionless constants are 
retained where present, but, because they are constants and are unaffected by 
symmetry operations, they are not shown with product signs. For reasons explained 
below, it is convenient to construct the product of (2.39) with 2. The irreducible 
representations I'' that transform in the same way as do z" and (a A 9)  satisfy ri = 

4, where 4 is the trivial representation, in all the examples considered below. 
Therefore z" x z" = E and (2.39) becomes 

i x  x T +S x T + (a A 9)  x z" x $ x T = z" x T. (2.40) 

Similarly (2.7) becomes 

The momentum equation (2.16) becomes 

1 

CT 
- (i x ((a A 9)  x $+ z" x S)  + (a A 9)  x 2 x $ x S +S x S + $ x $) 

= 2 x S + (a A 9) x $ + R a t  x T + R, 2 x s + P,  (2.42) 

and that for the vertical vorticity (2.20) is 

1 
- ( i x  $+(a AP) x ($ x $+x x sj+ z" x $ x x) = $. 
0- 

(2.43) 

If (2.43) is multiplied by (a A 9 )  then, since (a A 9 )  x (a A?)  = E ,  

1 
- ( i X  (a A $ )  X $+$ X $4-8 X S+ (a A 9 )  X Z X  @ X 8)  = (a A $ )  X $. (2.44) 
CT 

Equation (2.44) is consistent with (2.42), as it must be, but is more restrictive 
because it only contains terms involving S and $. 

When the viscosity is a function of temperature (2.29) and (2.30) give a symmetry 
equation that may be written 

z"x 7 x S+(a ~ 9 )  x 11 x ~ = Ru~" x T f P .  (2.45) 

The behaviour of the viscosity is most easily obtained by expanding (2.31) in a 
Taylor series : 

7 = E+T+TxT+TxTxT+ .... (2.46) 

The symmetry groups of the variables are controlled by the boundary conditions 
and by (2.2). If the right-hand side of (2.1) is to  transform like a vector, $ and S must 
behave in the appropriate way. Under m, 

x+-x,  u,+-u,, uy+uy, u,+u,. 

These conditions require $+-$, S+S.  

(2.47) 

(2.48) 

Since the operators are unchanged under C,,, these conditions apply to any 
reflection in a vertical plane. Under m, however 

z+-z ,  u,+u,, uy+uy, u,+-u,. 

$--+$, S + - A .  

These conditions are satisfied if 

(2.49) 

(2.50) 
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The symmetry equations (2.40)-(2.42) are also invariant under m, if 

T + T ,  s+s,  (2.51) 

and under m, if T+-T,  s+-s. (2.52) 

S, s and T therefore all have the same spatial symmetry, which is different from that 
of the two-dimensional stream function !P. 

It is now clear why the symmetry equations have been written in a form that 
contains only ~ x S ,  ~ x T ,  Z X S ,  ( i r \ g ) x $ ,  SXS,  S x T ,  S X S  and $ x @ .  None of 
these symmetry expressions change sign on reflection in horizontal or vertical planes, 
and therefore none have black and white symmetry. 

When the viscosity depends on temperature, (2.46) shows that, under m,, 7-7 
and the equations are invariant. However, under m,, T 'r - T and 

v + E - T + T x T - T x T x T +  . . .  (2.53) 

and the equations are not invariant. 
Since all components of the velocity reverse under m,, and since the differential 

operators in (2.1) are unchanged, S 'r -S and $ 'r - $ under this operation. As is well 
known, and as is clear from (2.40)-(2.42), the differential operators in the equations 
are not invariant under m, when the solutions are time dependent. 

The last symmetry operation of concern is the sign-change operator R. By 
definition 

RS+-S, Rs+-s, RT+-T, R$+-@. (2.54) 

It is straightforward to show that these symmetry conditions are compatible with 
u = 0 and u.2 = 0 on z = 0,1, and with g,, = cUz = 0 if $ is independent of x and y 
on the boundary and has a symmetrry element m,, and if V2S = 0 on both 
boundaries. 

Perturbation theory can now be used to obtain the symmetry equations governing 
the behaviour of perturbations. If all variables may be expanded in terms of a small 
parameter e ,  then 

(2.55) I As = S,+€Sl+ . . . )  s = s,+esl+ . . .)  

$ = $,+e$,+. . . , T = T,+eT,+.. . , 

Ra = Ra, + eRa, + e2Ra, + . . . , 
R, = R,, + ER,, + e2R,, + . . . , 

P =  P0+€P,+ .... 

In  crystallography e is known as the order parameter. Taking the zeroth-order 
solution to  be a steady state that is being perturbed, (2.40) gives 

0b0) 
~ , x T , + ( ~ A ~ ^ ) x ~ x @ . , x T , = ~ x T ~ ;  (2.56) 

O(el) 

t" x 2 x T~ + (So x T~ +To x S,) + (3  A?) x 2 x (k0 x Tl +To x @J = 2 x TI .  (2.57) 
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Equation (2.41) becomes 

0 ( e 0 )  

so X so + (2 A$)  X X $b0 X so = 73 X 8,; (2.58) 

0(e1) 

i X  z" X s1 + (8, x s1 + so X 8,) + (2 A 9) X f X ($b0 X s1 +so X $,) = 72 X 8,. (2.59) 

Equation (2.42) gives 

0 ( e 0 )  

1 - [ (a  A 9 1  x 2 x $0 x so+ ($0  x $o+Xo x So)] 

W )  

U 

= (3  A 9 )  x $, + 2 x 8, + Ra, i x To + R,, z" x so + Po (2.60) 

Equation (2.45) gives 

(2.61) 

z^ x 7, x So + (2 A 9)  x 7, x $o = Ra, 2 x To + Po ; (2.62) 

i x T o  x 81s i x so x T I  + (3  A 9 )  x (To  x $1 +$o x T I )  

= R a o i  x Tl + Ra, 2 x To + PI. (2.63) 

Equation (2.46) becomes 

(2.64) 

ql = (E+To+T0xT,+ ...) xT,. (2.65) 

These symmetry equations are formal statements of the ' symmetry ' that anyone 
who has worked with equations such as (2.16) will have noticed, and which provides 
a convenient check on correctness of algebraic operations. Several features of these 
equations are of interest. Perhaps the most important is that the three momentum 
equations have been reduced to one symmetry equation by the use of potentials. 
Another is the presence of Po and PI in (2.60)-(2.63). Since these terms could have 
been eliminated by taking the curl of the momentum equations, these must be 
satisfied when Po and Pl are omitted. The equations do, however, determine the 
transformational behaviour of Po and Pl. 
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2.5 .  Factor groups governing a transition 
It is now possible to define what is meant by a factor group of a convective transition. 
It is constructed by first finding the group G containing all the symmetry elements 
of all the operators and variables of the relevant perturbation equations to O(eo) and 
O(el). There is always an invariant subgroup H of Q that is generally most easily 
found from the symmetry group of the perturbation. The group governing the 
transition T is isomorphic to the factor group GIH.  Its  importance is that the 
behaviour of each operator and variable must correspond to that of one or more of 
the irreducible representations of T. The behaviour of the combination of an operator 
and a variable, shown by a multiplication sign in the symmetry equation, can be 
found from that of the product of the representations involved if these are one- 
dimensional. If the irreducible representations are matrices, then the product signs 
represent the multiplication of the characters of these matrices. The order of the 
factor group can be reduced by considering the symmetry group of operators and 
variables taken together, and the symmetry equations (2.56)-(2.63) have been 
written to exploit this property. If the symmetry group of Tl is (for instance) Pmmm’, 
then that of 2 x TI is Pmmm. The same result holds for whose symmetry group 
must be Pm’m’m in the same system, whereas that of (3 A 9 )  x $,is Pmmm. The 
factor group therefore need not contain m’ as an element. Since the number of entries 
in the table of irreducible representations increases as approximately 2n, where n is 
the number of generators, as a practical matter i t  is important to keep the order of 
T as small as possible. 

3. Planform transitions when 7 = q(T) 
3.1. k transitions in the absence of C,, 

The simplest of all the transitions that White (1981) studied he called the mosaic 
instability. The two planforms involved are shown in figure 2 ( a  and b ) .  Only the cold 
sinking sheets are shown as solid lines. He found that figure 2 ( a )  was stable when 
R a  = 14800, a = 3.70 and that figure 2(b) was stable when Ra = 63350, a = 3.74, 
where a is the wavenumber, when the viscosity variation between the top and 
bottom boundaries was 50. The critical Rayleigh number for this instability is 
estimated to be about 20000 when a = 3.7. 

It is first necessary to decide to what plane groups the two planforms belong. Both 
patterns clearly have C,, axes and two mirror planes, and therefore contain the point 
group 4mm. The symmetry operations of p4mm, illustrated in figure 2 (c), shows that 
four mirror planes should intersect on the C,, axis. Inspection of figure 2 ( a  and b )  
shows that they do. The glide lines and C,, axes are also present. Therefore both 
patterns belong to the plane-group type p4mm, though their primitive unit cells, 
outlined by dashed lines, are of different size and orientation. Though p4mm is a 
symmorphic group, i t  contains rotational symmetry elements that act a t  several 
points and also glide lines. These symmetry elements are a consequence of the 
periodicity of the lattice and the presence of a 4mm point group. IT  (1983) g‘ ives as 
generators 

1, t ,  = (a,O),  t, = (O,a) ,  C,,, m,. (3.1) 

m, and C,, act a t  the origin, which is taken to be on the C,, axis, and the length of 
the sides of the primitive unit cell in figure 2 ( b )  are taken to be a. Since both patterns 
have symmetry group p4mm the transition is of type k .  However the change in the 
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FIQURE 2. Planform transition by loss oft,, a k-type transition called the mosaic instability by 
White (1988). The primitive unit cell and the larger unit cell, which is the primitive unit cell of ( b ) ,  
are shown dashed. The additional symmetry element present in (a )  is the centring translation t,. 
(c) Shows the symmetry elements of the primitive cell p4mm. Squares are tetrad, ellipses are diad 
axes. Heavy lines are mirror planes and dashed lines are glide planes. 

symmetry group does not correspond to a doubling in the length of the side of the 
primitive cell in figure 2 (a) ,  since there would then be no change in orientation of the 
axes and the area of the cell would increase in size by a factor of four. The symmetry 
element that  is lost is the translation labelled t, = (a/2,  a /2 )  in figure 2 (a),  which is 
present in figure 2 (a )  but absent in figure 2 (b ) .  Such elements that are present in one 
group but not in the other will be referred to as active elements. The larger unit cell 
marked by dashed lines in figure 2 (a )  will cover the plane when repeated, but is not 
a primitive cell. It is therefore written as ciimm, using c to indicate the presence of 
centring generator t,. The next concern is whether p4mm of figure 2 ( b )  is an invariant 
subgroup of c4mm. This question can be answered by discovering whether 

t ,  gi tgl = 95 ( 3 4  
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is satisfied, where gi and gi are elements of p4mm. The first three generators clearly 
satisfy (3.2). That the second three do also is most easily seen by using the rotation 
matrices corresponding to C,, and m, : 

0 - 1  - 1  0 
O ) .  m x = (  0 l ) .  (3 .3)  

to compare the effect of transforming a vector (x,y) to that of one shifted to 
(x +a /2 ,  y + a / 2 )  before rotation and then shifted back by ( -a /2 ,  - a / 2 )  after. The 
matrices (3 .3)  form a faithful representation of the point group. These operations 
show that 

t ,  C,, t i 1  = C,, t ; l ,  t ,  m, t i 1  = m, t;l (3.4) 

Clearly the right-hand sides of (3 .4)  are elements of p4mm, which is therefore an 
invariant subgroup. The symmetry group of figure 2 ( a )  can then be written in terms 
of cosets: 

(c4mm) = (p4mm) + t3(234mm}. (3.5) 

Though there are infinitely many elements t! of the translational group with 
generator t , ,  there are only two cosets. This is because t i  = t,t , .  Therefore elements 
with n even are elements of the first coset, and those with n odd are elements of the 
second. Because p4mm contains the identity element, possible cosets such as 
t:b4mm) must contain the element t;. But this element is an element of one of the 
two cosets in (3.5). Hence this possible coset must be identical to  one of those in (3.5), 
and the factor group must be isomorphic to 2,. The irreducible representations can 
be written as 

z2 E(p4mm) t ,  
r, I 1 c4mm (3.6)  
r, 1 - 1  p4mm 

The notation used here shows the abstract group isomorphic to the factor group a t  
the top left, with the cosets that  form the representation of this group in line to the 
right. The invariant subgroup involved is written in brackets following E.  The 
identity element E in the factor group is the entire symmetry group p4mm. The other 
element of the factor group is the product of all elements of this group with t,. The 
irreducible representations are numbered 4 to r,, with 4 always being the trivial 
representation. Tables like (3.6) show the characters, which in this case are the same 
as the irreducible representations because these are one-dimensional. When the 
representations are two-dimensional the representations of the generators will also be 
given. The last column on the right shows the plane group that transforms in the 
same way as does the irreducible representation on the same line. In  this example the 
irreducible representation is a faithful representation of the factor group. It is clear 
that  any element of the coset t3(p4mm) could be used as the active element. The 
procedure necessary to  determine the factor group has been explained in detail in this 
case because i t  is fundamental to all the applications discussed below. I n  fact, since 
there are only two elements in the factor group, p4mm must be an invariant 
subgroup. The relevant steps will in the future only be discussed when they differ 
from those in this example. 

The symmetry equations in steady state for the circulations in figure 2 are 
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together with (2.56), (2.62)-(2.65). (2 ~ 9 )  and f are invwiant under t,. All operators 
are therefore passive and transform as does 4. The symmetry groups in figure 2 ( a  
and 6 )  are those of To and T, respectively. Since To transforms as 4, (2.64) shows that 
7, must also. This statement will be abbreviated to q0 = c. Then (2.62) requires 
8, = 4. The argument above shows that T, = < under t , .  Since 4 x r, = 4, (2.65) 
requires q1 = and (3.7) requires 8, = 4. Turning to (2,63), qo x X,, 8, x q,, Ra,T, = 
& but Ra,To = c. Because there are no other terms in (2.63) that transform as 
does 4, Ra,To = 0 .  Since To =# 0, Ra, must be zero. Provided Ra, =+ 0 ,  to O ( 2 )  the 
expression for Ra in (2.55) may be written as 

c = - t[(Ra-  Ra,)/Ra,];, (3 .8)  

where Ra, is the critical Rayleigh number for this transition. Because of the 
orthogonality of the characters of the different representations, the solvability 
condition is also satisfied if T, contains no component that transforms as does 4. 
Equation (3.8) is the standard expression for the perturbation amplitude near a 
pitchfork bifurcation and corresponds to the steady-state solution of the Landau 
equation. 

The Landau equation itself may be obtained by allowing e = E ( t ) ,  but in this and 
other examples transient behaviour will not be considered. This argument therefore 
shows that the transition in figure 2 is a pitchfork, rather than a transcritical or a 
Hopf, bifurcation, and does so without attempting to describe the functional form of 
the temperature distribution. It is only necessary to describe the change in 
symmetry. The essential part of the argument depends on the symmetry groups of 
the terms on the left-hand side of (2.63). Provided these all transform as does one of 
the irreducible representations of Z,, and this representation is different from that of 
To, then Ra, must be zero and (3 .8)  holds. It is not, however, possible to determine 
the sign nor the magnitude of Ra, (or even whether it differs from 0), and therefore 
whether the pitchfork bifurcation is sub- or supercritical. 

The above discussion ignored the terms in $ and is therefore incomplete. All terms 
containing $ are associated with (2 A$). Since both $ and (2 A f )  change sign under 
m,, the product is invariant under m,. Hence the symmetry equations are satisfied 
if 

and the condition on Ra, remains. 
The irreducible representation & corresponding to T, and S, changes sign under 

t , .  It is therefore invariant under ti  and the space group of the perturbation is a type 
I V  Shubnikov space group. I n  all pitchfork bifurcations with factor groups 2, the 
symmetry group of the perturbation has a black and white element that is not an 
element of the symmetry group of the unperturbed flow. k transitions result in type 
IV  Shubnikov groups, t transitions in type 111. 

Another well known k transition observed by White (1988, figure 23) is from rolls 
to rectangular cells, shown in figure 3. Rolls have a symmetry group po12mm, 
because they are invariant to any translation in the x-direction. The symmetry group 
of the bimodal pattern is p2mm, since the wavenumber of the cross-rolls is in general 
different from that of the basic flow. Generators of p2mm are E ,  t ,  = (a ,  O),  t ,  = (0,  b ) ,  
Cz2, my, where a =+= b.  Taking t ,  = ( a / 2 , 0 )  yields two cosets for the same reason as 
before, and the invariant subgroup is p2mm. But the infinite group po12mm is in- 
variant under any translation in the x-direction. It is therefore unlike the space group 
c4mm considered in the first example, which, though infinite, was only invariant 
under a discrete infinite set of translations. There are therefore infinitely many 

(2 A j )  X $, = 4, (2 A 9)  X $l = 4 
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I 0 0 

i i i  0 0 0 

FIGURE 3. Transition from rolls (a )  to a rectangular planform ( b ) ,  called the cross-roll instability 
by Busse (1967b). The symmetry group of ( b )  shown in ( e )  results from the loss of the translational 
symmetry of (a) .  The transition is of type k. 

invariant subgroups p2mm, with the location of m, between 0 and t,. The factor 
group is 2, = {E(pBmm), t3(p2mm)}. As before So = To = yo = 4, S ,  = T, = 7, = & 
with the symmetry group pZmm, Ra, = 0, and ~, has the symmetry group p2m‘m’. 
This transition was first investigated by Busse (1967 b ) ,  and Busse & Whitehead’s 
(1971) experiments suggest that the transition is a pitchfork bifurcation when the 
viscosity is constant. White (1981) carried out similar experiments in a fluid with 
7 = y(T).  Though he did not determine the nature of the bifurcation, the argument 
above shows that it is not affected by the temperature dependence of the viscosity. 

3.2. t and Ic transitions in the absence of C,, 

Most of the transitions that affected the square planform observed by White (1981, 
1988) involved loss of a C,, axis and were therefore t transitions. Several were then 
followed by k: transitions, and one by a further t transition. In  all cases studied by 
White, transitions involving the loss of C,, (but not of C,,, see $3.3) and another 
symmetry element occurred in two stages, each corresponding to the loss of a single 
element. The simplest of these transitions is that of cell stretching (White 1988, 
figures 13, 14), and is illustrated in figure 4. 

The additional generator required to produce p4mm from p2mm is C,,. It is first 
necessary to show that p2mm is an invariant subgroup of p4mm using the 2 x 2 
matrices corresponding to the transformations on a plane. Then the order of the 
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p4mm p2mm 

FIQURE 4. The square planform in (a )  undergoes cell stretching in the z-direction to produce 
rectangles in ( b ) .  The symmetry element lost is C,, and the transition is of type t .  

factor group must be found by determining the number of independent cosets. 
Possible cosets are EbBmrn), C,,@Smrn}, Ciz(p2mm} and C~,(p2mrn}. But p2mm 
contains both the identity element and Czz( = C;,). Therefore the first and third 
possible cosets have an element, C2,, in common and must be identical. The same 
argument applies to the second and the fourth, since C4,Cz, = C&. Hence there are 
only two cosets and the factor group is 2, = {E(pSrnm), C4,@2mm)}. The arguments 
of $3.1 then show that Ra, = 0 and the transition is a pitchfork bifurcation. 

White (1983) observed four different transitions that followed the path 

t 
p4mm -p2mm. 

c4, 

The arrow in all such expressions points from the more symmetric to the less 
symmetric group, and does not indicate the direction in which the transition occurs. 
From the point of view of symmetry his cell splitting and chain instabilities, figure 
5 ( a  and b ) ,  are the same transition occurring in opposite directions. Cell splitting 
produces one new translational symmetry element (figure 5 a) and therefore involves 
a transition to the minimal isomorphic supergroup of lowest index, whereas in the 
chain instability a translational element is lost (figure 5 b )  and the symmetry becomes 
that of the maximal isomorphic subgroup. In  both cases the invariant subgroup is 
p2mm, the factor group is 2, = {E(p2mm), t3(p2mm)} and the transition is a pitchfork 
bifurcation. 

A different type of k transition, which White (1988, figure 13g) called cell fusion, 
is illustrated in figure 6, and involves 

k 
p2mm - c2mm. 

The symmetry elements of c2mm are illustrated in figure 6(c ) .  The point-group 
symmetry of the two space groups is the same, and the translational elements are 
t ,  = (a ,  0 ) ,  t, = (0, b)  and t ,  = (a /2 ,  b/2) for figure 6 ( b ) .  The same elements together 
with t, = (0, b/2)  generate the symmetry group in figure 6 ( a ) ,  though the resulting 
unit cell is four times the size of the primitive cell and the generators are therefore 
different from those in IT (1983). The invariant subgroup of figure 6 (a )  is therefore 
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Cell 
splitting 

p2mm 

V 

"' 
Chain 

instability 

FIGURE 5 .  The symmetry element involved in the cell splitting and in the chain instabilities of 
White (1981, 1988) is the same. The transition from ( b )  to (a)  is of type k and involves the loss of 
translation symmetry in the 2-direction. 

c2mm, the factor group is 2, = {E(cSmm), t4(c2mm)} and the transition is a pitchfork 
bifurcation with Ra, = 0. 

The last type of instability that affected p2mm in White's (1981) experiments he 
called the lip instability. The perturbed pattern has the symmetry group pm (figure 
7 a ,  6 )  and the transition occurs by loss of the C,, element of p2mm. 

Therefore 
t 

p2mm - pm, 
C 2 Z  

the factor group is 2, = {E(pm),C,,(pm)} and the bifurcation is again a pit,chfork 
with Ra, = 0. 

White (1988, figure 14) also observed a change in planform from p2mm to one with 
that of a point group 2mm and no periodic symmetry elements. A similar transition 
is discussed in $3.3, where the transition occurs to an isomorphic subgroup other than 
the maximal isomorphic subgroup. Such transitions are nonetheless k transitions and 
lead to pitchfork bifurcations. 
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(4 
p2mm 

V 

FIGURE 6. The cell-fusion instability of White (1988) involves a k-type transition in which a 
translational symmetry element in the 2- and y-directions are lost, but the centring symmetry 
element t ,  in (a )  is not. The transition is of type k, and is to the plane group c2mm, (c). 

FIGURE 7. White’s (1981) lip instability changes the planform from the rectangular planform 
p2mm in figure 3 ( b )  to pm in (a) ,  with mirror planes in ( b ) ,  by loss of C,,, and is therefore a t 
transition. 

3.3. t and k transitions associated with C,, 
Transitions involving planforms with C,, (or C6,) symmetry elements are more 
difficult to analyse than are those with C,, and C,, because the subgroup {E,  C3,, C&} 
interacts in a complicated way with other symmetry elements. Therefore the 
invariant subgroups are not the symmetry groups of the less symmetric patterns. For 
instance, inspection of figure 1 shows that 2mm is a subgroup, but not an invariant 
subgroup, of 6mm. Hence the identity element of the factor group cannot be E(2mm). 
White studied various types of transition that occur in patterns of up and down 
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hexagons, labelled by the direction of the flow on the C,, axis. White referred to down 
hexagons as triangles. From the point of view of planform transitions the symmetry 
of up and down hexagons is the same. 

The simplest transition of the hexagonal planform to analyse is that  illustrated in 
figure 8, where the two opposite sides of each hexagon become longer and the other 
four shorter. This transition was also studied by Richter (1978) 

t 

c6mm - c2mm. 
c,* 

The unit cell in figure 8 (a)  is not the primitive unit cell used in I T  (1983), which is 
shown as a dotted rhombus. The advantage of using the centred lattice c is that  the 
x- and y-axes can be chosen to be orthogonal, and the same cell is common to c6mm 
and c2mm. The generators for c6mm are 

4 = (22/3,0), t, = (2 /3>3) ,  c,,, c2,, my, (3.9) 

and t ,  = t$t; ’ .  The length of the side of each hexagon is 2 units. The generators for 
c2mm are t,, t,, C,, and my. The obvious subgroup to choose is c2mm, which must be 
tested to discover if 

C3,{c2mrn)C~, = (c2mm). (3.10) 

Equation (3.10) is true for all generators except my, for which 

(3.11) 

The right-hand side is not an element of c2mm. Equation (3.11) may also be 
written 

(C&VZ,)~ = E. (3.12) 

Therefore c2mm is not an invariant subgroup. If, however, c2 is used instead it is 
straightforward to show that 

C3,{c2} ciz = {c2), (3.13) 

my{c2}m, = {c2}. (3.14) 

Hence c2 4 c6mm, c2 4 c2mm and c6mm may be written 

These cosets are all different, and therefore the order of the transition group is 6. 
However the second two and the last three cosets are conjugate to each other, 
because (3.12) shows that 

(3.16) I m,C:,m, = C3,’ 

C;,(m, C3,) c,, = my’ 

C$,(m, c:,) (73, = my c3,. 

Therefore the factor group {c6mm}/{c2} is isomorphic to D, 

(3.17) 
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FIGURE 8. The transition from hexagons (a) to a planform like that in ( b )  involves the loss of C,, 
and is therefore of type t .  The conventional unit cell in (a )  is shown dotted, with the symmetry 
elements in €or p6mm (c). It is, however, more convenient to use a larger unit cell, &mm, with 
orthogonal axes, shown by the dashed lines in (a),  which is common to both p6mm and c2mm 
in (6). 
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where for 4 

(3.18) 

This factor group differs from all those previously considered in having a two- 
dimensional irreducible representation, which is also a faithful representation of the 
group. The relevant symmetry equations are (3 .7) ,  (2.56), (2.62)-(2.65). As is the case 
for all planform transitions, z“ = To = 4. (2 A 9)  changes sign under my, but not under 
C,,. Therefore, (2 A 9)  = r,. It is also clear that T, = r,, because it cannot be invariant 
under 1 2 ~ ~ .  The character table (3.17) shows that 4 x 4 = 4, and therefore that the 
only term in (2.63) that transforms as does 4 is that containing To. Hence the 
transition is a pitchfork bifurcation. 

The existence of a two-dimensional representation results in a number of 
complications. The factor group (3.17) can describe transitions to both c2 and to 
c2mm, and both of these perturbations must transform like 4. There is therefore a 
degeneracy, and the critical Rayleigh number for the transition to either space group 
must be the same. For this reason it is necessary to choose the correct basis functions 
to describe the transition. Such functions can be represented by a vector a = (a l ,  b l ) ,  
where a, and b, are arbitrary constants. The representation of my shows that the 
general basis vector corresponds to c2, whereas a transition to the space group c2mm 
requires b, = 0. Since a, is arbitrary, the basis vector can be written a = (1,O). 
Another difference is that ri = + & + 4, and hence the nonlinear interactions can 
lead to complicated circulations involving all three representations. One further 
difference concerns the definition of the projection operators, and is discussed in the 
Appendix. 

The relationship between rolls, po12mm, and c2mm is the same as that between 
rolls and p2mm discussed in Q 3.1. Therefore the factor group is 2, and the bifurcation 
is a pitchfork. These bifurcations can be written 

t 

c6mm - c2mm 
c,, 

pol 2mm - c2mm. 
Ic 

Another transition White (1981) observed involved a change from p6mm to the 
planform in figure 9 (a ) .  This plane group is p2mg and is non-symmorphic. The origin 
of the standard unit cell for this group in IT  (1983) has been moved to make it the 
same as that in figure 8(a ) ,  and the x- and y-axes have been interchanged. It is 
convenient to use Hermann’s rules and to consider the transition 

t 

as consisting of two parts : c6mm - c2mm, 
c,, 

c2mm - p2mg. 
k 

As in figure 8 the generators of c2mm are E ,  t , ,  t,, Czz ,  my with C,, and my a t  the 
origin of the coordinate system. Neither t ,  nor C,, in this position is a generator for 
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FIGURE 9. The transition of hexagons to rectangles involves an intermediate planform in which 
every alternate column of hexagons is shifted, to produce the planform p2mg in (a )  with symmetry 
elements in (b ) .  This non-symmorphic group is an invariant subgroup of c2mm and p2mm shown in 
(c).  The transition is of type k .  The dashed unit cell is used to describe the transition from figure 
8 ( b ) ,  the dotted to that in figure 9(c). 

p2mg. Instead the C2, axis is a t  t3/2 and will be denoted C;,, and the generators of 
p2mg are E ,  t , ,  C:,, my. The symmetry positions generated by c2mm on (x, y )  are 

(3.19) 

(3.20) 

Clearly p2mg is a common subgroup, and i t  is easy to show that it is invariant. 
Then 

(c2mm) = {p2mg}+t3{p2mg}. (3.21) 

1 E ,  ' 2 Z j  my' my CZA = m,) 
(x, Y 1 (%!a (5, !d (% Y )  
6 t3 ' 2 %  J t3my 83 my c 2 z  

(x+ d 3 , y + 3 )  (X+ d 3 ,  y+3) (x+ d 3 ,  g + 3 )  (z+ 4 3 ,  y+3) ,  

where those for p2mg are 

myC,*, 1 E ,  c,*, my 

(x, Y )  (X+ d 3 ,  Y+ 3) (x, Y) (T+ 4 3 ,  Y-3). 

I 1  FLM 191 
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Therefore the factor group {c2mm}/(l32mg} is isomorphic with Z , ,  Ra, = 0 and the 
transformation is a pitchfork bifurcation. 

The p2mg pattern in figure 9(a) was observed by White (1981) to change to the 
rectangular planform in figure 9 ( c ) ,  which is p2mm and symmorphic. The generators 
of p2mm are t , ,  t,, C,, and m, through ( 0 , O ) .  If the same unit cell is used for p2mg and 
p2mm another element, t ,  = (0 ,3 ) ,  must be included, since there are two primitive 
p2mm cells to each primitive p2mg. Furthermore the unit cell for p2mg shown in 
figure 9 ( b )  must be displaced by ( 2 / 3 / 2 , 0 )  to be that shown dotted in figure 9 (a) ,  so 
that the C,, axes of p2mm and p2mg coincide. Then p2mg is the invariant subgroup, 
and 

(l32mm) = {p2mg} + t4(132mg}. (3.22) 

This transition is therefore a pitchfork bifurcation with Ra, = 0. This series of 
transitions may therefore be written 

c3mm - c2mm, 
c 3 z  

k 
c2mm-p2mg, 

t 

k 
p2mm -p2mg. (3.23) 

Another transition that White observed in his study of hexagons is illustrated in 
figure 10(b) .  After the loss of C,, to produce c2mm, an enlargement of the unit cell 
occurred, by a, factor of five in the x-direction. This transition is a k transition. The 
generators of figure 10(a) are 

t 1  = (22 /3 ,0 ) ,  t ,  = ( 2 / 3 , 3 ) ,  Cez, (3.24) 

with t ,  = t ; t ; l ,  and those of figure 10(b) are 

t4 = (102/3,0)  = 5t1, t 5  = (52 /3 ,3 ) ,  my, C2zr (3.25) 

with t, = tit;'. This transition is therefore not to the maximal isomorphic subgroup 
of lowest index, which would have 

t ,  = (62 /3 ,0 )  = 3t1, t5 = (32 /3 ,3 ) .  

It is straightforward to show that 

or J t: c,, t ,  = t: c,,, 
c,, t ,  = t: c,,. (3.26) 

Therefore the invariant subgroup cannot contain C,,, but can contain my (but not 
mz). The correct choice is therefore cm, and, because of (3.26), this leads to a factor 
group that is isomorphic to D 5 :  

D5 E(cm) t , , t :  t ;> t: c2,, t ,  CZZ, t; c,, 
t; CZU t': c,, 

r , 1  1 1 1 c2mm(a) 

r, 2 2cosp 2cos2p 0 c2mm( b )  

r, 2 2cos2p 2 c o s p  0 c2mm(b) 

G 1  1 1 - 1  cm(a) 

cm(b) 

cm(b), 

(3.27) 
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FIGURE 10. A transition that occurs in the c2mm planform produced from the breakdown of 
hexagons increases the size of the unit cell in (a ) ,  shown dashed, by a factor of 5 to produce the 
planform in ( b ) .  This transition is of type k but is not to the maximal isomorphic subgroup, which 
would only increase the unit cell size by a factor of 3. 

where the a and b in brackets following the space group refer to  figure 10, 

p = 2x15 = 72' 

and the two-dimensional matrices representing the generators are 

for r3 and 

(3.28) 

(3.29) 

for 4. Both two-dimensional representations have the correct transformational 
behaviour to represent TI, and it is not obvious whether one or both are required. The 
perturbation which transforms in the same way as does 4 need not have the same 
critical Rayleigh number as that which transforms like &. The group D, most 
commonly occurs as a point group with elements C,, and C2z, which is clearly 
isomorphic to D,. The element C,, can then be represented by the appropriate 
rotation matrix, which generates a rotation through an angle -p. Since the 
representation r3 contains the same matrix as the representation of one of the 
generators, i t  must correspond to such a rotation. All conventional perturbations are 
invariant when rotated through 2x, a rotation corresponding to -5p and the unit 
element of D,. They are therefore represented by 4. I n  the representation 4, 
however, C,, corresponds to a rotation through an angle -2p. Therefore any 
property described by this representation changes sign when rotated through 2x, and 
is only invariant when rotated through 4x. No conventional physical quantities 
transform in this manner. Only spin in quantum mechanics behaves in this way, and 
therefore representations such as 4 are known as spin representations. They are 
therefore not to be expected in fluid mechanics. Somewhat surprisingly, this 
argument is incorrect. When the general Fourier expansion of c2mm(b) is projected 
onto c, 4 and & (see Appendix), one-fifth of the terms transform as does &, two- 

11-2 
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Y 

FIGURE 11. The mosaic instability with an hexagonal planform increases the unit cell by a factor 
of 3 with the primitive cells shown dotted in (a )  and ( b ) .  The c6mm unit cell of ( b )  is shown dashed 
in (a )  and (b) .  The transition involves the loss of the translational symmetry element t, in (a), but 
the symmetry group of ( b )  is not an invariant subgroup of that of (a) .  The largest invariant 
subgroup that is invariant and common to both is c3m1, with the symmetry elements for the 
primitive cell p3ml in (c). 

fifths as does 4 and two-fifths as does 4. Therefore instabilities that transform as do 
4 and 4 are allowed. 

White (1988, figures 16 and 17) proposed two other transitions from hexagons. He 
observed only one of these : the mosaic instability in hexagons illustrated in figure 11. 
Though this instability resembles the mosaic instability in squares illustrated in 
figure 2, the factor group is not 2, and the area of the unit cell increases by a factor 
of 3 instead of 2. The mosaic transition in hexagons is clearly of type k, since both 
planforms are p6mm (drawn as usual as c6mm). The primitive unit cell of figure 11 ( b )  
is shown dotted. The generators are 

c,,, m = A (  2 - 4 3  -d3), - 1  1 (3.30) 

with t, = tit;'. This choice of generators allows m, reflection in a plane a t  right angles 
to t, ,  to be an element of the invariant subgroup. The additional generator needed for 
figure l l (a )  is t, = (3, 4 3 ) .  Inspection of figure l l (a )  shows that t: = t, t,. The 
obvious subgroup to test for invariance is therefore c6mm(b). It is not an invariant 
subgroup because 

t;lCzzt4 = t4C2,. (3.31) 
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Since the cosets of whatever invariant subgroup of c6mm(a) is used must contain t,, 
no such subgroup can contain C,,. The largest possible subgroup is then c3m1, and 
it is easy to show that this group is indeed an invariant subgroup of c6mm(a) using 
rotation matrices. Then the factor group is D, and 

{c6mm(a)} = {c3ml) + t4{c3ml) + ti(c3ml) 

+C,,{c3m1}+t,C,,{c3m1}+t~C,,{c3ml}. (3.32) 

As before the last three cosets and the second two are conjugate to each other, and 
the character table is (3.17). All operators, To, So, $o and yo transform as does r,. 
To, So and v0 have the symmetry group c6mm(a) whereas $, has symmetry c6m'm'(a). 
TI, S,, ql and ( $ A ? )  x$,  transform like 4, with a basis vector (1,O). Therefore 
Ra, = 0 and the transition is a pitchfork bifurcation. Unlike (3.17), there is no 
obvious geometric interpretation of the matrices corresponding to 4. 

The other transition proposed by White (1988, figure 17) he called cell fusion in 
hexagons, though he did not observe i t  in his experiments. The transitions involved 
resemble those in the hexagonal mosaic instability, but are more complicated. The 
transitions he sketches are from c6mm to c31m, and consist of both a t and a k 
transition, followed by one to c6mm. Using Hermann's rules these can be written 
as 

(3.33) I t 

c6mm - c3m 1 
CZZ 

c3ml- c31m 

c6mm - c31m. 
C2z 

The first transition involves a factor group Z, with elements E{c3ml}, C,,{cSml}. The 
second increases the size of the unit cell by a factor of 3 through the loss oft,. The 
factor group is D, and is given by (3.32), with C,, replaced by m and c3ml by c3. Both 
generators C,, and m must be chosen in a different way from (3.32). The final 
transition is a t transition with 2, as the factor group. The transition (3.33) is 
therefore more complicated than any of those discussed above. Since White did not 
observe this transition, it is not discussed here in detail. 

k 

t 

3.4. General remarks about planform transitions when q = q(T) 
The considerable variety of transitions analysed in the last three sections and listed 
in table 2 are all pitchfork bifurcations. The observed behaviour therefore suggests 
that such transitions are preferred. All factor groups also contain Z,, either as the 
factor group itself, or as the invariant subgroup in a semidirect product with 2, 
or 2,. 

Transitions of type t leave the area of the unit cell unchanged. Because there are 
only a small finite number of point symmetry elements in any planform, the number 
of possible t transitions is limited. In  contrast a doubly infinite number of k 
transitions are possible in an infinite plane group. The symmetry element that is lost 
is a translation, which is often in a direction not parallel to either the x- or y-axis. 
Two observations suggest that the critical Rayleigh numbers for k transitions to 
subgroups other than the maximal subgroup are not very different from that to the 
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maximal subgroup. The maximal k subgroup of the pattern in figure 10 (a) increases 
the length of the side of a unit cell by a factor of 3 in the x- or y-direction, whereas 
the transition observed by White was to the pattern in figure 10(b) which did so by 
a factor of 5 .  The other observation concerns a transition White observed from p4mm 
to a pattern with a 2mm symmetry axis, but with no periodicity in either the x- or 
y-direction. Since White’s photograph (White 1988, figure 14c) extends for 5 unit 
cells of p2mm in each direction, the occurrence of this instability suggests that the 
Rayleigh number for the maximal subgroup of p2mm, produced by a t transition 
from p4mm, is little different from that of other p2mm patterns with much larger unit 
cells. 

4. Transitions involving symmetry in the z-direction 
4.1. Marginal stability 

More work has been carried out on marginal stability than on any other problem in 
thermal convection, because standard perturbation theory can be applied. A full 
discussion of the problem is complicated because the space group of the initial 
conductive solution is a Lie group, of which the perturbation is a discrete, but not 
an invariant, subgroup. The factor group required is therefore infinite, and contains 
infinitely many two-dimensional representations. The discussion below is therefore 
incomplete, though the results are correct. A full treatment will be published 
elsewhere (D. McKenzie, in preparation). 

As is always the case, the question of which planform will be preferred depends on 
the magnitude of the coefficients in the equations, and cannot be investigated using 
factor groups. But the nature of the transition can be, and group theory was used for 
this purpose by Golubitsky et al. (1984). Probably the best known of all pitchfork 
bifurcations is that originally studied by Rayleigh : the onset of convection in a layer 
with stress-free boundaries. The planform he investigated consisted of rolls, but 
hexagons with the same wavenumber can be produced by superimposing three rolls 
a t  angles of 60”. Rolls without a symmetry element in the vertical plane, for instance 
with a rigid upper boundary and a stress-free lower boundary (Schluter, Lortz & 
Busse, 1965), or with a viscosity that is a function of temperature (Busse 1967a), are 
also formed by a pitchfork bifurcation. However, Busse (1967a) showed that the 
transition becomes a transcritical bifurcation when the planform is hexagonal and 
the viscosity is a function of temperature. 

The first example is that of two-dimensional rolls in the (y, 2)-plane illustrated in 
figure 12. The perturbed temperature in figure 12(b) has symmetry group 
a2’mm’(c2’m’m) and translational symmetry elements t:, t i ,  and t, t,. For the reasons 
discussed in $2 ,  the order of the factor group involved in any transition is reduced 
if the symmetry group of 3 x T, a2mm, rather than that of T, is used in the analysis. 
The boundary conditions on z = 0 , l  are the same and r,~ is constant. 3 x To (figure 12a) 
has all the symmetry elements of a2mm, and in addition is unchanged under t ,  and 
any vector in the y-direction. The important feature of the plane group in figure 12 (6) 
is that it has no symmetry elements, either ordinary or black and white, which are 
not also possessed by 2 x To. In  particular, as figure 12 ( c )  shows, it is not invariant 
under t i .  Choosing t ,  as the active element and a2mm as the invariant subgroup 
produces a factor group 2, 

(4.1) 

Z ,  E(a2mm) 
r, 1 
r, 1 - 1  
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FIGURE 12. (a )  Shows the conductive solution To@), which is independent of y. (b) Represents a 
sketch of the isotherms of T, in the vertical plane for a roll solution, when the nonlinear terms are 
important, with hot regions shown as continuous, cold regions as dashed, isotherms. The operation 
R changes the sign of the temperature, to produce the pattern shown in (c). The symmetry group 
of (b) is a2’mm’(c2m’m). 

(4 (b) 

____) Y 
‘¶ 

FIGURE 13. (a) A sketch of the isotherms of rolls in the vertical plane, like that in figure 12,  but 
when the nonlinear terms are unimportant and when perturbation theory can be used. The centring 
symmetry element in figure 12 is absent, but has been replaced by a black and white symmetry 
element t i .  (b) Shows the symmetry elements of p2mg, the ordinary space group of (a). 

2xT,  = &. If 2xT1 transformed as does & its sign would be changed by t ,  and 
therefore it would have a black-and-white symmetry element tg. It clearly does not, 
and therefore must be represented by both & and &. The transition is therefore 
transcritical. This surprising result contradicts both theory and experiment. The 
cause of the contradiction lies in the shape of the isotherms sketched in figure 12, 
which is correct for vigorous convection, but has a lower symmetry than that 
determined from first-order perturbation theory. At this order the temperature 
eigenfunction for rolls is f ( z )  cos (27cy/h), where h = 2t,. Unlike the pattern in figure 12, 
this function does have a symmetry element tg. 

A sketch of such a function in figure 13 has been drawn with no mirror planes 
m, at  (0, 0 ,  t3 /2)  and ( O , O ,  3t,/2), and transforms as does 4. The invariant subgroup 
of 2 x To and 2 x Tl is a2mm, and the factor group is 2, = {E(a2mm), t2(a2mm)). The 
transition is therefore a pitchfork bifurcation. The same result also applies to the roll 
instability when 1 = y(T).  The invariant subgroup is then the line group fim and 
l;lo = 4, 2 x T l ,  2 x 8 ,  and v1 = &. 

When the marginally stable planform is hexagonal the problem is more 
complicated because th is no longer a symmetry element. If the viscosity is constant, 
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FIGURE 14. The planform ( a )  and isotherms ( b )  in a section in the (y, 2)-plane through z = 3, the 
middle of the unit cell. The boundary conditions are the same on z = 0 , l  and the fluid is taken to 
be Boussinesq. The isotherms illustrated are those of the perturbation solution, and have a mirror 
plane m, through z = 112. 

and if the boundary conditions are the same on z = 0,1,  then T, and S, are unchanged 
by a reflection m, through z = 112. In  contrast To has a symmetry element mi 
through this point. Figure 14 shows that the pattern in the layer 1 2 z 2 0 continued 
in the vertical direction by reflection mi through z = 0 and 1. Because of the 
difference in the symmetry groups of To and T,, this continuation leaves To unchanged 
but reverses the sign of TI. The resulting pattern shown in figure 14 demonstrates 
that T, possesses a symmetry element t; that  is not shared by To. The invariant 
subgroup of i x  To is therefore C6/mmm and the factor group is 2, = {E(C6/ 
mmm), t3(C6/mmm)> with f x To = 4 and 2 x T, = &. Then Ra, = 0 and the transition 
is a pitchfork bifurcation. When the viscosity is constant and the boundary 
conditions are not the same on z = 0, 1, 2 x T, and 2 x S, no longer possess m, as a 
symmetry element. The perturbed solution then no longer has a symmetry element 
that is not present in To and the bifurcation would be expected to be transcritical, as 
Malkus & Veronis (1958) argued. I n  fact this is not the case, because the linear 
operators in the governing linearized equations are self-adjoint (Schliiter et al. 1965). 
This property does not have any obvious relationship to the symmetry groups of 
To and TI. In  contrast to  the symmetry arguments, which are independent of whether 
the equations are linear or nonlinear, self-adjointness is a property of linear equations 
only. It is therefore not surprising that symmetry arguments fail to show that the 
transition is a pitchfork bifurcation. I n  general a sufficient, but not a necessary, 
condition for a transition to be a pitchfork bifurcation is that  Ra, = 0 because of 
symmetry. As the example above illustrates, Ra, may be zero when it is not required 
to be by symmetry. This special property of the linearized equations governing 
marginal stability reduces the usefulness of symmetry arguments in such problems. 
Such arguments are most useful when the nonlinear terms are dominant, since few 
other approaches are then available. But it is nonetheless important to remember 
that, though the symmetry may be insufficient to demonstrate that Ra, = 0, this 
condition may still be satisfied. 

The last case to consider is the onset of convection when 7 = q(T) ,  which Busse 
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(1967a) showed to be a transcritical bifurcation when the planform was hexagonal. 
Equation (2.63) contains qo, which, as (2.64) shows, is not symmetric or 
antisymmetric with respect to a change in sign of To. There are therefore no 
translation symmetry elements in any direction, and the transition is expected to be 
transcritical. In this example this result is correct. Since the same argument applies 
to the transition to the square planform from the conductive solution when the 
viscosity depends on temperature, this may also occur through a transcritical 
bifurcation. 

All the examples in which a pitchfork bifurcation could be shown to occur because 
of symmetry have a perturbed temperature that has a plane or a space group 
containing a symmetry element th or tk that is not present in To. Instead To has 
symmetry elements t, and t,. Therefore all these plane and space groups are examples 
of type IV  Shubnikov groups, where the black and white operation is a translation. 
When this condition is not satisfied by the perturbation to O ( B ) ,  as in figure 12 (b), the 
transition may be transcritical. In  figure 12(b) the black and white symmetry 
element is associated with rotation. The group is therefore a type I11 Shubnikov 
group, all of whose symmetry elements are also possessed by To. It is commonly 
argued that the two solutions that originate from the pitchfork bifurcation a t  
marginal stability correspond to that shown in figure 13(a), and to one shifted by 
t ,  to the right. This view is only correct when Rt, is a symmetry element of T,, and 
even then is misleading. When this condition is satisfied the operation R on T, leads 
to the same pattern as does t,, and therefore the effect of the two operations is the 
same. But it is R, not t,, that is the important element, because RT, is a solution 
whereas RT, is not. The hexagonal pattern in figure 14 illustrates this distinction. 
When the viscosity is constant, however, the marginal stability problem is 
complicated by being governed by differential equations that are self-adjoint when 
they are linearized. Hence the condition Ra, = 0 is satisfied even when it  is not 
required to be so by symmetry alone. 

4.2. Transitions when So =k 0 

Perhaps the simplest type of transition between two three-dimensional space groups 
is that  studied by Lennie et al. ( 1 9 8 8 ~ )  using a three-dimensional time-dependent 
numerical scheme with an infinite Prandtl number and fixed heat flux on both 
boundaries. This transition is not easy to understand without space groups, and in 
fact motivated the present investigation. The transition is discussed in detail in 
Lennie et al. and is illustrated in figure 15. It involves the transition from space group 
14/m’mm for To and X, to P4/m‘mm for TI and 8,. This transition is particularly 
simple, because it involves only the loss of the centring symmetry element t, = (L/ 
4 2 ,  L l 4 2 , l )  in I4/m’mm, where L is defined in figure 15. Since the conventional 
unit cell for this space group is not primitive, whereas that for the perturbation is, 
the conventional unit cell does not change. The invariant subgroup of ~ X T ,  and 
3 x So is P4/mmm and the factor group is isomorphic with Z , ,  its cosets are {E(P4/  
mmm), t4(P4/mmm)} and the transition is of type k : 

k 
I4/mmm - P4/mmm. 

This transition is important because it is a simple illustration of an active symmetry 
element involving all three space dimensions that leads to a doubling of the size (in 
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14 f m'mm 

Cold 

0 Hot 

P4/m'mm 

X 

1: 
* 2L * 

FIGURE 15. A diagrammatic illustration of the circulation determined by Lennie et al. (1988~)  for 
the Boussinesq problem with no internal heating and fixed heat flux on z = 0 , l .  The solid dots show 
sinking regions and open dots rising ones. The numerical experiment was carried out in a region 
one-eighth the size of that illustrated in (a ) ,  and had as symmetry group I4/m'mm, with a unit cell 
shown dotted. The centring translation shown as t,  was lost in a k transition to produce P41m'mm 
in ( b ) .  2, y and z show the coordinate system used for the numerical solution, and X ,  Y and 2 are 
the conventional crystallographic axes. The unit cell has been separated into two halves on either 
side of the m: plane. 

this case the volume) of the unit cell. The steady-state symmetry equations (2.57) 
and (2.61) are 

So x T, +To x S ,  + (a A 9)  x z" x To x 11., = 2 x T,, (4.3) 

1 -[(a A g )  X z" X so X +so X s,] = (a A?) x @, +z" x S, +Raoz" x T, +Ru, z" x To. (4.4) rT 

Since Lennie et al. ( 1 9 8 8 ~ )  only considered infinite Prandtl numbers, the left-hand 
side of (4.4) is zero and x So = 4, and 2 x T,, 2 x S, = &. The = 0. Then 2 x To, 
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transition is a pitchfork bifurcation. Since the space group of TI and 8, contains the 
black-and-white generator ti it is a type IV  Shubnikov space group (Bradley & 
Cracknell 1972, figure 7.4). 

The best known transitions to circulations with three-dimensional symmetry 
elements are those that affect rolls. Many have been described by Busse and his 
colleagues (Busse 19673; Busse & Whitehead 1971; Busse & Clever 1979), and 
Bolton, Busse & Clever (1986) provide a useful review of earlier work and list many 
of the instabilities. All except one of these bifurcations are to three-dimensional 
circulations with black-and-white symmetry elements, and are not easily represented 
in two-dimensional diagrams. The problem is even greater for the four-dimensional 
black-and-white space groups needed in discussions of the time-dependent cir- 
culations that Bolton et al. (1986) describe. However the principles involved in 
analysing the nature of the bifurcations are the same as those used in the simpler 
problems already discussed. The presence of elements representing symmetry 
operations in three and four dimensions does not complicate the structure of the 
factor groups. 

Bolton et al. (1986) studied the stability of rolls to a disturbance of the form 

(4.5) qY, ,.) ei(dv+bzf+st. 

If s is real, steady circulations may exist when s is small and positive. Oscillatory 
flows may occur when s = iw where w is real, and are stable when their amplitude is 
sufficiently small. Bolton et al. classify the disturbances in terms of their symmetry. 
All the circulations they discuss are invariant under mi if the origin is taken to be a t  
the base of the layer, instead of using their origin, which is equidistant from the 
boundaries. Their ‘ y-symmetry ’ corresponds to the element m,. As their equation 
(2 .3 )  shows, in the presence of my their ‘R-symmetry ’ is not a reflection operation but 
a black-and-white rotation C:; through (0, t 2 / 2 ,  t 3 / 2 ) ,  where the dimensions of the 
unit cell are 2t,, 2t2 and 2t, in the x-, y- and z-directions. This symmetry operation 
produces a displacement in the z-direction, and therefore the relevant symmetry 
groups are three-dimensional space groups in all cases except the Ekhaus instability. 
It alone can be described by a plane group, but in the (y, 2)- not the (x, y)-plane. If 

is expressed in terms of conventional symmetry elements, the space groups 
involved can be found using IT  (1983) : 

(4.6) 

Since all the circulations are invariant under mi, the corresponding generator is 
t 2 t 3 m y ,  or t , t ,  when my is also an element of the space group. In  the case of the zig- 
zag and E-oscillatory instabilities m; is an element of the group. However the space 
group of the perturbation only agrees with that observed if t ,  t , ,  instead of t, ti, is 
taken to be a symmetry element (F. H. Busse, personal communication 1987). t , t ,  is 
therefore given in table 1, though this symmetry element is not consistent with 
equation (2 .3 )  of Bolton et al. (1986). 

The symmetry elements in the x- and t-directions are easily obtained from (4.5). 
The steady solution changes sign when translated through t ,  = ( n / b , 0 , 0 )  and 
therefore has a symmetry element t i .  The oscillatory circulations have in addition an 
element ti ,  where t, = ( O , O ,  0, n / w ) .  

Table 1 shows the symmetry elements of those circulations described by Bolton 
et al. (1986), together with that of the basic rolls. Many of the symmetry elements 
of B02 and BE1 are visible in Bolton et al.’s figures 2 ,  4 and 7 .  The temperature 

C:; = t, t ,  CLz = t ,  t ,  my mi. 
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‘ y-symmetry ’ ‘R-symmetry ’ 

Steady, TI 

Some of the other elements 

2D rolls mv t z  t 3  m, ,ml , t , , t , , t , t , , t , t ,~ ,  

t z  t ;  m,, 4, t i ,  t ,  t, t 3  

Zigzag m e  t 2  t 3  m,, t ,  my, 4, t’l 
m,, t ,t ,  m,, mi, t l  

B 0 2  mY t ,  t ;  m,, ml, t i ,  t i ,  tit,, 4 t 2 t 3  
BE 1 my t ,  t 3  m,, mi, t i ,  tl, t, t, 

E-  Oscillatory mk t 2  t ,  m,, t, my, mi, ti, t i ,  t ,  t ,  

Cross-roll and knot 

- - Eckhaus 
Oscillatory, Tl 

TABLE 1. Symmetry elements of S and T (modified from Bolton et al. 1986). All space groups 
also contain the generators ti and ti. 

FIGURE 16. A sketch of the isotherms (a)  for the zigzag instability with the conventional fluid- 
dynamical choice of axes. The curves in the (%, y)-plane show the planform of the instability, with 
the cold sheet shown dashed. Two layers are illustrated to show the presence of mi. With the 
exception of centres of symmetry, the symmetry elements of Cmcm are shown in ( b )  using the 
conventional choice of crystallographic axes. They correspond to Amam when the axes in ( a )  are 
used instead. 

structure To +T, and some of the symmetry elements of the zigzag and E-oscillatory 
instabilities is illustrated in figure 16, where the rolls are displaced by a constant 
distance on planes with constant x (Busse & Whitehead 1971 ; Busse 1972). 

It is straightforward to use table 1 to determine the generators of the invariant 
subgroups and the factor groups involved in the bifurcations to steady flows because 
all elements P and Q satisfy PQ = QP. The generators of the invariant subgroups are 
therefore all the symmetry elements common to the rolls and the perturbation. In 
the case of the cross-roll and knot instabilities these elements are 

m,, my, mk, t? ,  t i ,  t i ,  t , t , t , ,  (4.7) 

and the space group of T, and S, is Immm’ (Im‘mm). The space group of z^xT,, 
f x  S, and (3  A Y )  x +, is therefore Immm, the active element is t , ,  and the factor 
group is 

2, = {E(Immm), t,(Immm)}, (4.8) 
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and the instability is a pitchfork bifurcation. The space group for the zigzag 
instability differs from that of the cross-roll because it contains the elements t ,  t, and 
t ,  my instead of t ,  tj and m y ,  and therefore I m m m  is replaced by the non-symmorphic 
group Amam(Gmcm) in (4.8). 

All the symmetry elements for the Eckhaus instability are contained in the space 
group for the rolls. It is therefore not possible to show that this transition is a 
pitchfork bifurcation from symmetry alone. 

Unlike the orthorhombic symmetry of all the space groups discussed above, the 
skewed varicose instability (Busse & Clever 1979; Busse & Bolton 1984) has a 
monoclinic space group, though it has not been possible to determine all the elements 
of the space group of TI from the published information. But, since the expression 
(4.5) for TI has a symmetry element ti, whereas that for To has an element t , ,  the 
transition must be a pitchfork bifurcation. 

4.3. General remarks about space-group transitions in constant-viscosity circulations 
In  contrast to the great variety of planform transitions observed by White (1981, 
1988), rather few transitions to steady flows in constant-viscosity fluids have yet 
been described. Most of those that have been studied are k transitions, and all have 
been to the maximal invariant subgroup. There is as yet no indication of how the 
critical Rayleigh number varies with the order of the factor group when the 
transition is to a non-maximal k subgroup, or when successive k transitions occur. 
Except for the Eckhaus instability, all the transitions yet studied in detail involve 
perturbations with the symmetry of type IV Shubnikov black-and-white space 
groups, and have 2, as a factor group. 

The difference in the behaviour between the constant- and temperature-dependent- 
viscosity circulations is striking. It results from the stability of rolls at marginal 
stability when the viscosity is constant. The translational symmetry element along 
the roll axes must be lost to produce a three-dimensional circulation, and in most 
cases the point-group symmetry elements are retained. Little work has yet been 
carried out on transitions between the resulting three-dimensional circulations. Only 
in the case of the skewed varicose instability is the symmetry element my of the rolls 
also lost. I n  contrast rolls are not a stable planform in variable-viscosity circulations 
when the variation of viscosity is large, and therefore transitions between plane 
groups are easily observed a t  moderate Rayleigh numbers. Similar transitions may 
be difficult to study in constant-viscosity circulations because of Hopf bifurcations 
to time-dependent flows. 

The principal complication in using group theory to discuss marginal stability 
when the viscosity is constant is that the linearized equations are self-adjoint, and 
therefore all solutions will bifurcate from the stationary state with Ra, = 0, even 
when not required to do so by their symmetry. This complication illustrates a general 
result: Ra, = 0 on symmetry grounds alone is a sufficient but not a necessary 
condition for a pitchfork bifurcation. 

5. Symmetry elements involving time 
5.1. Hopf bifurcations and loss of m, 

Unlike the reflection symmetry in the space domain, no solution that shows time 
dependence can contain either m, or mi as a symmetry operation. This result is well 
known, and is obvious from the form of the symmetry equations, which involve both 
t"x T, and T,. Oscillatory solutions are a common feature of convective circulations, 
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and may involve temperature perturbations that are symmetric under m,, when the 
origin is appropriately chosen. It is then not obvious how this result is compatible 
with the structure of the equations. The purpose of this section is to examine a 
variety of transitions to time-dependent flow and show that in all these cases the 
Hopf bifurcation involves the factor group D,, and that the full solution is not 
invariant under m,, though the temperature may be if another variable is not. As in 
the case of marginal stability, the symmetry group of the basic steady-state flow is 
a Lie group. Therefore the discussion below is incomplete, though the results are 
correct. A full treatment will be published elsewhere (D. McKenzie, in preparation). 

A well-known Hopf bifurcation that has been studied extensively occurs in double- 
diffusive convection. The mechanism of the oscillation was outlined by Stern (1960) 
and Veronis (1965), who emphasized that the disturbance to the temperature field 
was not in phase with that to the solute. This result is easily obtained from (2.23) and 
(2.24). Elimination of a, and substitution of 

a3 = a! exp (iwt), a5 = a! exp (iwt) (5.1) 

gives (5.2) 

where a = w/7?(012+ 1).  (5.3) 

If a: is real, the temperature disturbance is symmetric about t = 0. However a! is 
then only real if 7 = 1,  or K, = K ~ .  Oscillations cannot then occur. The same result can 
be proved more generally using factor groups. The stationary state that is being 
perturbed has linear temperature and salinity gradients and So = 0. T,, S ,  and s1 have 
the plane-group symmetry a2'mmr(c2'm'm) shown in figure 13. If the period of the 
oscillation is 2t, the appropriate factor group is 

I), E(a2'mm') m, t ,  
4 1 1 1  
r, 1 
r, 1 1 - 1  - 1  
4 1 - 1  - 1  1 

Since the flow is two-dimensional 1+9 = 0. Also 

~ = T , = S , = & ,  t ^ = & .  
Thus (2.57), (2.59) and (2.61) become 

4 xT,+S,  = T,, 

r ,xs ,+s,  =7s1, 

and 
1 -4 x S ,  = S ,  + Ra,T, + Ra, & +RE, s1 + RE, 4. 
IT 

(5.4) 

(5.5) 

The condition that Ra, = RE, = 0 requires S,, T, and s1 to contain no component that 
transforms as does r,. This condition is satisfied provided the perturbation contains 
no components with period t , .  Then all can be written in terms of & and &. 
Furthermore, substitution of S ,  from (5.6) into (5.8) gives 

1 
- (4 x T, +T,) = 4 x TI +T, + Ra, 4 + Ra,T, + RE, s1 +RE,  4. 
IT (5.9) 
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If T, = & then s1 must contain both & and 4, Ra, = R,, = 0 and the transition is a 
Hopf bifurcation. The same is true when T, = &+&. 

It is of some interest to use the structure of the factor group to understand how 
the oscillation arises. The essential feature is that the time operator i is active, but 
transforms differently from either s1 or T,. Because 4 x & = 4 and 4 x & = &, the 
active operator generates & from 4 and & from 4. It is this behaviour that produces 
the oscillation. The active operator does not, however, generate 4 and therefore 
Ra, = 0, the transition is a Hopf bifurcation, and the amplitudes of both & and 4 
are proportional to (Ra - Ra,);. This type of behaviour is not possible if the factor 
group is 2, or D,. The smallest group for which it can occur is D,, and such a group 
arises when two symmetry elements P and Q are involved in the transition, with 
PQ = QP, P2 = Q2 = E. This condition is satisfied by the cosets m,{a2'mm'} and 
tt{a2'mm'} in the previous example. 

Two Hopf bifurcations have been studied in two-dimensional circulations which 
can both be discussed using three-dimensional space groups. In  low-Prandtl-number 
fluids the even or E-oscillatory instability generates wiggly rolls (Willis & Deardorff 
1970; Busse 1972; Bolton et al. 1986). As table 1 shows, at any instant the tem- 
perature distribution has the same space group as the zigzag instability in figure 16. 
Busse (1972) compares the instability to waves propagating along a rope, and also 
shows that the instability is still present when b = 0 in (4.5). Bolton et al. (1986) show 
that the growth rate of this instability is strongly dependent on the Prandtl number, 
which suggests that the nonlinear terms in the momentum equation are important. 
In two dimensions @ = 0 and the symmetry equations (2.57) and (2.61) become 

and 

~ x ~ x T , + S , X T , + T ~ X S ,  = ~ x T ,  (5.10) 

1 
-(t^x 2 x S, +So x S,) = 2 x S,  + Raoi  x T, +Ra, 2 x To+P,. 
U 

(5.11) 

When b = 0 table 1 shows that the elements of the space group of T, include 

ttm,, m:, tl, t t t z t , ,  t;, ti,  ti. (5.12) 

If t̂  is taken to be in the x-direction, the space group of S, and T, is I2'am'(Im'a2') 
and that for f x S ,  and i x T ,  is therefore I2am(Ima2). The factor group can be 
written 

D, = {E(I2am), m,(I2am), t,(I2am), ttm,(12am)}. (5.13) 

The oscillation arises in exactly the same way as in the previous example, with t̂  = 
4 ; i x T,, i x S ,  = & + 4. Since So x T,, To x S, and So x S, are all invariant under the 
same transformations, it is not possible to decide which of these nonlinear terms 
maintains the oscillation from symmetry alone. But the strong dependence on 
Prandtl number suggests that So x S, is responsible. 

A rather different two-dimensional Hopf bifurcation arises when the Prandtl 
number is infinite, when (5.11) becomes 

0 = 2 x S ,  + R a o i  x T, + Ra, i x To+P, (5.14) 

and corresponds to a circulation like BE1 or B02 in table 1 with b = 0. The elements 
include 

m,, mi, t;, t t t 2 t 3 ,  t;, t i .  (5.15) 
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If i is again taken to be in the x-direction the space group for TI and S ,  is I2’mm‘, 
(Im’m2’). The invariant space group required is therefore I2mm(Imm2~ and the 
factor group is 

D, = {E(I2mm), m,(12mm), t,(12mm), t ,  mt(12mm)}. (5.16) 

This Wopf instability was investigated in a fluid with finite Prandtl number by Moore 
& Weiss (1973). The time-dependent behaviour studied by Curry et al. (1984) and the 
Hopf bifurcation of Lennie et al. (1988b) arise in the same way. The physical 
mechanism that produces the instability is the advection of a number of hot and cold 
blobs by the basic flow. As the active elements are m, and t , ,  the number of blobs does 
not affect the nature of the transition. This remark is in agreement with the 
behaviour reported by Curry et al. (1984). 

Three sketches of the geometry of T, are illustrated in figure 17 (a-c), corresponding 
to the advection of one, two and three pairs of hot and cold blobs around the cell. 
Moore & Weiss (1973, figure 4a) illustrate the time dependence of the vertical, w, and 
horizontal, u, velocities. These show a small distortion from harmonic motion that 
is most noticeable in u. This distortion removes the symmetry element m, that would 
otherwise be present in one curve. Since such an element cannot be present in the 
space group of the perturbation as a whole, its loss can have no effect on the nature 
of the transition. 

The three Hopf bifurcations in table 1 are similar to those discussed above except 
that the invariant subgroups are four-dimensional and black and white. Though the 
tables of Brown et al. (1978) list all four-dimensional space groups and their 
generators, they are not easy to use. The generators are written in terms of the 
primitive basis vectors, and, unlike the conventions used in IT (1983), the labels used 
for the space groups give no indication of the symmetry elements they contain. The 
generators in table 1 show that all three space groups are hyperorthorhombic, with 
two reflection elements. Two contain a third reflection, whereas the E-oscillatory 
instability has a glide plane and is therefore non-symmorphic. The groups involve 
two different types of centring, that of B02 being G( 1,4) if the time axis is taken to 
be x4, whereas those of BE1 and the E-oscillatory circulation belong to D( 1,4) (2,3). 
Further progress requires the generators of all groups with these lattices to be 
converted to the basis used in table 1 by using the Z matrices listed on pp. 271-2 of 
Brown et al. (1978). The Z-class (Brown et al. 1978) of BE1 and the E-oscillatory 
instabilities is 06/01/07, and that of B02 is 06/01/10. The generators given as A ,  B 
and C for these groups (Brown et al. 1978, p. 97) are my, m,, mym, for 06/01/10 and 
m,, m,, m,my for 06/01/07. For D(1,4) (2,3) centring the vectors (1,1,0,0)/2 and 
(0, 0, 1,1)/2 correspond to tt and t, respectively. The space group of 2 x S,, 3 x TI and 
(2 A 9)  x @I for the E-oscillation can then be identified as the non-symmorphic group 
06/01/07/003, and the symmorphic groups 06/01/10/001 and 06/01/07/001 for 
B02 and BE1 respectively. If any of the three invariant subgroups is denoted by K ,  
then the factor group for all of these instabilities is 

D, = {Wa m,(K), W ) ,  ttmt(K)J (5.17) 

and the oscillations arise in the same way as before. Therefore all six Hopf 
bifurcations involve the same factor group D,, and differ only in their invariant 
subgroups. 

A general difficulty in analysing the Hopf transitions discussed above is the 
absence of detailed contour plots of the structure of the oscillatory flow. In the case 
of double-diffusive convection this problem does not arise because the perturbation 
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FIGURE 17.  Sketch to illustrate the symmetry in ( t ,  y, 2)-space of various time-dependent solutions, 
showing the path of hot blobs as heavy solid lines and cold blobs as heavy dashed lines. (a)  One hot 
blob. ( b )  Curry et aZ.'s (1984) oscillation with two hot blobs. (c) Moore & Weiss' (1973) circulation 
with three hot blobs. None of the solutions possess m, as a symmetry element. 
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equations (2.23) and (2.24) are available. What is needed is plots of the spatial and 
temporal behaviour of the flow and tables like that of Bolton et al. (1986). The plots 
should show perturbations such as TI,  and not either T,+T,, or spatially averaged 
functions such as the Nusselt number, or nonlinear functions such as the amplitude 
or the kinetic energy. 

5.2. k transitions involving t ,  

Once a Hopf bifurcation has occurred to produce a periodic solution the symmetry 
group can change through t and k transitions. The active elements may involve one, 
two, three or four dimensions. Most work has been carried out on the Lorenz 
equations (see Sparrow 1982), where the bifurcations occur as the Rayleigh number 
is reduced for the usual choice of parameters. Period doubling takes place, with a 
transition to the maximal subgroup of the infinite line group corresponding to 
displacements in time by one period t,. The active element in this transition is t,, the 
differential operator d, is passive, the factor group is 2, ={E(%z),t,@)} and each 
transition is a pitchfork bifurcation. The reason why this behaviour appears to be 
different from the spatial period doubling illustrated in figure 15 is that the only 
symmetry element present in the solutions to the Lorenz equations is a translation 
in time, whereas three-dimensional convective circulations generally contain a 
number of point symmetry elements as well. The factor groups involved are, 
however, the same, and the period doubling changes the periodicity in time rather 
than in space. 

6. Discussion 
The detailed discussion of the symmetry of many of the transitions observed in 

convecting systems and listed in table 2 has obscured the essential simplicity of the 
results obtained. Transitions to steady-state circulations involve loss of either a 
point-group symmetry element (t  transitions) or a lattice symmetry element (k 
transitions). There are only a small finite number of point-group elements present, 
but an infinite number of translation elements exist in all line, plane and space 
groups. Only one point-group element, m, exists in line groups, but several are 
present in plane and space groups. Most transitions to steady circulations that have 
been observed occur through pitchfork bifurcations. This result is easy to 
demonstrate when the ordinary symmetry group of the perturbation is an invariant 
subgroup of the unperturbed symmetry group, with an additional black and white 
element. When this is not the case the factor group is not isomorphic with Z , ,  but 
with D, or D,. The discussion of transitions from planforms with a symmetry element 
that is a continuous variable to one with a discrete rotational or translational 
element is incomplete, and a full treatment will be published elsewhere (D. McKenzie, 
in preparation). 

In all the examples discussed in $ 5 ,  the transition from steady to oscillatory flow 
involves the loss of two symmetry elements to produce a D, factor group. The 
oscillation results from the i operator having a different transformational behaviour 
from the temperature and stream function, which are combinations of two other 
representations & and 4, but not of the trivial representation G. This behaviour 
produces a Hopf bifurcation. The convection system then in general has four- 
dimensional symmetry elements and must be represented by a four-dimensional 
black-and-white space group, though some of the examples discussed can be 



The symmetry of convective transitions 333 

Section 

3.1 

3.1 

3.2 

3.2 

3.2 

3.2 

3.3 

3.3 

3.3 

3.3 

3.3 

4.1 

4.1 

4.2 

4.2 

4.2 

Instability 

Squares and rectangles 

Mosaic (White 1988, figure 13) 

Cross rolls (White 1988, figure 23)* 

Cell stretching (White 1981) 

Cell splitting (White 1981) 

Cell fusion (White 1988, figure 13) 

Lip (White 1981) 

From hexagons (White 1981) 

From hexagons (White 1981) 

Cell splitting (White 1988, figure 18) 

Hexagons 

Hexagons to rolls (Richter 1978; White 
1981) 

Mosaic with hexagonal planform 
(White 1988, figure 16) 

Space groups 

E 

p4mm - p4mm 

pol 2mm - p2mm 

p4mm - p2mm 
CIL 

p2mm -p2mm 

p2mm - c2mm 

p2mm - pm 

c2mm -p2mg 

p2mm - p2mg 

c2mm - c2mm 

k 

t 

k 

k 

t 

Cae 
k 

k 

b 

t 

c6mm - c2mm 
CQI 

c6mm - c6mm 
k 

k 

Marginal instability to rolls* Pael mmm - A,,, mmm 
k 

Marginal instability to hexagons* 

Cross rolls (Busse 1967b)* 

Squares (Lennie et al. 1988a) 

Zigzag (Busse 1967b)* 

P,,, mmm - C6/mmm 

A,,, mmm - Immm 

14/mmm - P4/mmm 

A,,, mmm - Amum(Cmm) 

k 

P 

k 

Factor Figure 
N O .  

2 

3 

4 

5 

6 

7 

9 

- 

10 

8 

11  

13 

14 

- 

15 

16 

TABLE 2. Pitchfork bifurcations. The plane and space groups are those of i x S ,  i x T  and 
(a h j )  x $. Transitions marked with an asterisk involve representations of Lie groups, and are 
discussed in detail elsewhere (D. McKenzie, in preparation). 

represented using only three dimensions. Presumably t and k transitions will be 
discovered in four-dimensional systems. By analogy with the three-dimensional 
behaviour, most transitions are likely to be pitchfork bifurcations. 

A striking feature of all the factor groups is that they are either 2, or dihedral 
groups, even when the transition is a Hopf bifurcation. This behaviour arises because 
the factor groups all have 2, as an invariant subgroup. Direct products of 2, with 
2, and 2, produce 2, and D,, semidirect products with 2, and 2, generate D, and 
D,. The significance of this behaviour is a t  present obscure, though it would not be 
surprising if it was the expression of some more general principal. 

Another general result of considerable interest is that the symmetry group of all 
convective circulations that have yet been studied contains reflection as a symmetry 
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element, and therefore all bifurcations yet observed conserve parity. Since all the 
bifurcations discussed above arise through a spontaneous loss of a symmetry 
element, there is no obvious reason why m should be retained when other elements 
are lost. But parity is commonly conserved in physical systems, and it is therefore 
not surprising that it is conserved in many convective transitions. 

The only time-dependent system that has yet been studied in detail is that 
governed by the Lorenz equations. Since these consist of nonlinear ordinary 
differential equations, the solutions are periodic in time only. Since the time- 
dependent solutions do not have m, as a symmetry element, only k transitions are 
possible. These lead to period-doubling cascades, with a 2, factor group, and the 
critical Rayleigh numbers of the successive transitions become more and more 
similar. When one more dimension is added to the system, the transitions occur 
between plane groups and the behaviour is more diverse. Both t and k transitions 
occur in two ($3) and three ($4) dimensions. In the case of plane groups there is also 
a suggestion that the differences between the critical Rayleigh numbers of successive 
k transitions become smaller. If this is indeed the case then period-doubling cascades 
should occur. But a more detailed investigation of this question is required. At 
present no k transitions involving translations in space and time have been reported, 
though suitable symmetry elements are present in the circulations studied by Bolton 
et al. (1986). 

In the light of these results, period-doubling cascades are to be expected in two-, 
three- and Sour-dimensional convective transitions. The consequences of their 
existence may already have been observed : all laboratory experiments that have 
been carried out a t  large Rayleigh numbers without imposing an initial planform 
with a plane-group symmetry have led to spatially aperiodic flows. By analogy with 
the Lorenz system, the simplest process that could lead to aperiodic circulation in 
space and time is period doubling with an active element that is a space-time 
displacement, like that observed by Bolton et al. (1986). However, it is unlikely that 
only k transitions will be involved. Most fluid dynamicists would describe a system 
that is aperiodic in space and time as turbulent. I S  convective systems do indeed 
become turbulent by cascades of pitchfork bifurcations principally involving k 
transitions in space and time, the process is rather different from Landau’s (see 
Landau & Lifshitz 1959, $27) and Hopf’s (1948) suggestions. They argued that 
successive Hops bifurcations occurred, producing periodic solutions with more than 
one modulation frequency. Ruelle & Takens (1971 a, b )  also have suggested that Hopf 
bifurcations of this type lead to turbulence (see also Arnol’d 1983, p. 278). Though 
such transitions are well known in solid materials (see for instance Heine & 
McConnell 1984)’ commensurate transitions are also common in crystallography and 
have received less attention in fluid mechanics. As this discussion shows, they also 
can lead to a behaviour that could be described as turbulent. 

As the examples discussed above illustrate, a great variety of pitchfork bifurcations 
occurs in convective systems. Several of these do not satisfy Landau’s conditions for 
a second-order crystallographic transition. The fluid-mechanical constraints are 
therefore weaker than the crystallographic, a difference that may also encourage 
pitchfork bifurcations. To discover whether period-doubling cascades do in fact lead 
to ‘turbulent ’ behaviour it is necessary to determine the critical Rayleigh numbers 
for the first few steps in a period-doubling cascade. Such a study is probably most 
easily carried out numerically. Transitions other than the one of interest can then be 
suppressed by forcing the solution to have the desired symmetry. The relevant 
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Fourier expansions for this purpose for all 230 space groups are listed in IT  
(1952). 

Though the examples in the previous sections were all taken from convection in a 
uniform layer of fluid in the absence of rotation, the methods are quite general and 
can be applied to any systems of differential equations. Because rather few general 
methods are available for the study of nonlinear partial differential equations, the 
methods developed here are likely to be of most use in such problems. 

This investigation was possible only because of the help of J .  D. C. McConnell and 
E. Salje who explained to me the elements of space-group theory. The stimulus for 
this project was a numerical study of three-dimensional time-dependent convection 
carried out with D. R. Moore and N. 0. Weiss, and I am grateful for their permission 
to include these results and for many suggestions. I would also like to thank V. 
Arnol'd, F. Busse, H. Huppert, N. Killough, K. Moser, M. Proctor, J. Swift and 
H. Wondratschek for their help, and J. G. Sclater for an invitation to the Institute 
for Geophysics, University of Texas a t  Austin, where much of this work was done 
with support through the Shell Chair in Geophysics. The research was also in part 
supported by a grant from the SERC. White's experiments were supported by 
NERC, the Royal Society, and Tate and Lyle. Department of Earth Sciences 
contribution 1059, 

Appendix 
Projection operators can be used to obtain functions that transform in the same 

way as does a particular irreducible representation. When the representation is one- 
dimensional the procedure is obvious : all the elements of the group are applied to the 
function in turn and the resulting expressions combined with the correct signs for the 
relevant representation. When, however, the irreducible representations are not one- 
dimensional the procedure is less obvious, and projection operators p must be used, 
where 

and i a n d j  refer to the row and the column of the representation r, of dimension 
d,, n is the order of the group and cj is the i j  element of the matrix representing the 
group element gn. Knowledge of the character table is not sufficient to evaluate 
(A 1) : it  is necessary to know the complete representations of every element in the 
group. Di Bartolo (1968) provides a worked example of the use of (A I) ,  and the 
development below follows the same procedure, which is applied to D, to describe the 
transition in figure 10. This process also illustrates the use of the Fourier expansions 
obtained from IT (1  952). 

The first step is to obtain the representations of all elements of the group. The two 
one-dimensional representations are given in (3.27), and the projection operators can 
be written down by inspection : 

(A 2) 11 - - 1 l o @ +  tl+ t': + t; + t; +c,, + t ,  c,, + t; c,, + t; c,, + t;lC,,), 

pfl = &(E+ t ,  + t;l + t; + t; -c,, -t ,  c,, -t; c,, -t; Czz-t':C2,). (A 3) 
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To obtain those for & and & the representations must first be written out. Those 

t ;  = ( c2 ;I), t: = (;; -;;); 
- 8 2  

c2, = ( I  0 - 1  O ) ,  t1C2, = ( -sl c1 -"). -cl t;c2, = (-;: I;;), 
1 (A 4) 

where c1 = cos p, s1 = sin p, c2 = cos 2p, s2 = sin 2p;  

and for 4 are E = (o 1 0  l); t, = (-;; :t) t: = (;I -;I); 

The eight projection operators for these two representations can now be written 
down : 

Projection operators act on the perturbed temperature in figure lO(b) ,  whose 
symmetry group is c2mm. IT (1952, p. 370) gives the general terms in the Fourier 
expansion ofc2mm as 

A = 8 cos 27th~" cos 27tky*,I 

B = 0, J 
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where h + k = 2n and n is an integer, and the variables marked with an asterisk are 
scaled so that the unit cell extends from 0 to  1 in the x*- and y*-directions. I n  terms 
of the variables x and y used in $3.3, 

c2mm can then be written as 

where f(x, y) is any function with the symmetry group c2mm. 
All that now remains is to  write out the expressions produced by each of the group 

operations on A and then to evaluate the projections. Ignoring the numerical factor 
of eight in (A 14), the group elements give 

(A 17) I EA = cos (phx) Ck, t1 A = cos (ph(X + 1)) ck, 

t': A = cos (ph(x  - 1)) Ck, t; A = cos (ph(X + 2)) Ck, 

t;A = cos @(X-2)) Ck,  

tlC,,A = cos (Ph(X- 1)) Ck,  t:C,,A = cos (ph(X-2)) Ck 

t; c,, A = cos (/3h(X + 2)) Ck, t: c,, A = cos (@(X + 1)) Ck 

C,,A = cos (PhX)C,, 

ck = c0~27~k-,  Y X =I, where 
t, t, 

Evaluation of (A 6)-(A 13) using 

1 +2  cosp+2 cos2p = 0 

gives 

pi1 = D5(m, k) COS((lOm+5)pX)ck, 

= D,,,(??Z, k) COS ((lorn+ 1o)px) ck 
Pi1 = 0, 
p;l = (Dl(rn, k) cos( ( lOm+l)~X)+D,(m,  k) cos((10m+9),8X))ck 

= (D,(m, k) cos((10m+4)~X)+D6(m, k) cos((10m+6)~X))ck,  

p:, = (-D,(m,k) sin((lOm+l)pX)+D,(m, k) sin((10rn+9)/3X))ck 

= (D,(rn, k) sin((10m+4)/3X)-D6(m, k) sin((10m+6)pX))ck, 

P L  = 0, pi, = 0, 

p& = (D,(rn, k) COB (( lOm+ 3) pX) + f),(m, k) cos (( 10m+ 7) PX)) ck 
= (D,(m, k) cos((10m+2)/3X)+D8(m, k) cos((10m+8)/3X))ck, 

pt2 = (D,(m, k) sin((10m+3)/3X)-D7(rn, k) sin((10m+7)/3X))ck 

= ( - D,(rn, k) sin ((lorn + 2) pX) + D,(m, k) sin (( lorn + 8) px)) ck: 

pi1 = 0, pi, = 0 

k odd 

k even 

k odd 

k even 

k odd 

k even 

k odd 

k even 

k odd 

k even 
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where D, . . . D,, are constants, m( 20)  and k( 2 1) are integers. Expressions like (A 19) 
are called symmetry-adapted functions. The projection of c2mm(b) onto is zero, 
as would be expected. The same is true of ptz and pt2,  because the plane group does 
not contain a black-and-white generator C&. If the transition was to cm(b) these two 
terms would not be zero. 

The planforms described by (A 19) are best illustrated by displacing the positions 
of the minima of To by &TIT,, where 6 is an arbitrary constant. Figure lO(b)  was 
constructed in this way and transforms like &. 
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